CLEARING ALGORITHMS AND NETWORK CENTRALITY

Christoph Siebenbrunner

University of Oxford, Mathematical Institute. All views expressed herein are those of the author and do not necessarily reflect the views of any affiliating organization.

SUMMARY & MAIN FINDINGS

- I show that the solution of a standard clearing model used in contagion analyses can be expressed as a generalized form of a Katz centrality measure under certain conditions
- These conditions mostly have a clear economic interpretation, most importantly the occurrence of a shock that renders all institutions insolvent
- This finding provides a formal explanation for the previously empirically observed close relation between the Katz centrality and contagiousness
- This finding allows to analyze the assumptions that one is making when using centrality measures for systemic risk analyses. I argue that they should be considered too strong.

CLEARING MODEL

The standard clearing framework introduced by Eisenberg and Noe (2001) is based on a balance sheet framework:

Which leads to a convenient expression for the **balance sheet equation**:

Equity = Assets - Liabilities = a + Cp - l

- C multiplied with any vector by construction gives the asset value of corresponding payments for each bank
- Cp gives the value of all interbank claims assuming that solvent banks fully repay their liabilities and insolvent banks repay the remaining value of their assets
- *p* is called the clearing payment vector and computed as the fixed point of the following map (setup by Rogers and Veraart (2012)):

$f(p) = \underbrace{(I - D(p))l}_{\text{Claims on insolvent banks}} + \underbrace{D(p) \left(r_a a + rC \left(\underbrace{D(p) f(p)}_{\text{Claims on insolvent banks}} + \underbrace{(I - D(p))l}_{\text{Claims on solvent banks}} \right) \right)}_{\text{Claims on solvent banks}}$

KATZ CENTRALITY

The Katz centrality measure is based on the following intuition:

- Every node starts with a start weight β (usually set equal to 1)
- Every node receives the weight from all its neighbours multiplied by a "dampening" factor $\alpha \in (0, 1)$

Let A be the adjacency matrix of a graph, then the Katz centrality of node *i* can be expressed as:

$$x_i = \alpha \sum_k A_{k,i} x_k + \beta$$

Which for $\alpha \neq \frac{1}{\rho(A)}$ can be solved in matrix form:

(1)

$$x = \sum_{i=0}^{\infty} (\alpha A)^{i} \beta = (I - \alpha A')^{-1} \beta$$

Equivalence

Under the conditions specified hereafter, a systemic risk measure $\sigma = l - p$ based The main conditions for equation 2 to hold are: on the solution to equation 1 can be expressed as:

 $\sigma = (I - rC)^{-1}\beta \tag{2}$

With $\beta_i = (1 - m)l_i - (r - m)(Cl)_i \forall r, m \in (0, 1), i < N$, where $m \in (0, 1)$ is an interpolation factor.

- All banks in the system are insolvent
- External assets are greater than equity for all banks
- There has to exist an outside world to which liabilities exist