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SUMMARY & MAIN FINDINGS

e | show that the solution of a standard clearing model used in contagion anal- e This finding provides a formal explanation for the previously empirically
yses can be expressed as a generalized form of a Katz centrality measure observed close relation between the Katz centrality and contagiousness

under certain conditions . . . . .
e This finding allows to analyze the assumptions that one 1s making when us-

e These conditions mostly have a clear economic interpretation, most impor- ing centrality measures for systemic risk analyses. I argue that they should
tantly the occurrence of a shock that renders all institutions insolvent be considered too strong.

CLEARING MODEL

The standard clearing framework introduced by Eisenberg and Noe (2001) 1s based on a balance sheet framework:

Figure 1: Stylized balance sheet
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sink node is always set to default.

Which leads to a convenient expression for the balance sheet equation:
Equity = Assets — Liabilities =a+ Cp — [
e (C multiplied with any vector by construction gives the asset value of corresponding payments for each bank

e (Cp gives the value of all interbank claims assuming that solvent banks fully repay their liabilities and insolvent banks repay the remaining value of their assets

e p 1s called the clearing payment vector and computed as the fixed point of the following map (setup by Rogers and Veraart (2012)):

Insolvent banks repay remaining asset value

A

Solvent banks repay in full : ( ( \ \\
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KAtz CENTRALITY

The Katz centrality measure 1s based on the following intuition:

Figure 2: Katz Centrality example (¢ = 0.3, =1)
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Under the conditions specified hereafter, a systemic risk measure o = [ — p based The main conditions for equation 2 to hold are:
on the solution to equation 1 can be expressed as:

e Every node starts with a start weight S (usually set equal to 1)

e Every node receives the weight from all its neighbours multiplied by a
"dampening" factor a € (0, 1)

r
1
Let A be the adjacency matrix of a graph, then the Katz centrality of node i can be
expressed as: «
1.56

X; = a’ZAk,ixk +,8
k

Which for a # /ﬁ can be solved in matrix form:

x= ) (@A) =(I-aA)"'p
=0

E.QUIVALENCE

e All banks in the system are insolvent
o=(I-rC)"'p (2)
e External assets are greater than equity for all banks
With 8; = (1 — m)l; — (r — m)(Cl);VYr,m € (0,1),i < N, where m € (0,1) 1s an
interpolation factor. . e There has to exist an outside world to which liabilities exist



