

Faculty of Economics

How does competition impact bank risk taking?

(discussant: Olivier De Jonghe)

The franchise value paradigm versus a risk shifting paradigm

olivier.dejonghe@ugent.be

Summary of the results

• The franchise value paradigm

Faculty of Economics

- More competition erodes profits
- This induces more risk-taking
- A risk-shifting paradigm (Boyd and de Nicolo)
 - Less competition in loan market results in higher lending rates
 - This results in more credit risk and problem loans
- Setting: Spanish banking market

Detailed databases Adjusted Lerner index

- Findings:
 - Boyd and de Nicolo hypothesis is rejected in most cases
 - Support for the franchise value paradigm

Comments on:

- 1. Modelling of fractional response variables
- 2. Measuring of Lerner index and endogeneity
- 3. Data-related issues
- 4. Inconsistent with Boyd and de Nicolo?
- 5. Minor comments

1) Fractional response variables

Conventional model $E[y | x] = X\beta$ However: y is a fraction, hence bound within [0,1]

Suggested remedy:
$$E[\ln\left(\frac{y}{1-y}\right)|x] = X\beta$$

Faculty of Economics

However, this does not allow to recover E[y | x] (see e.g. Papke and Wooldridge, JAE 1996)

Solution: Generalized Linear Model $E[y | x] = \frac{\exp(X\beta)}{1 + \exp(X\beta)}$ Results will be different \rightarrow example

UNIVERSITEI

1) Fractional response variables: example

Q: Does non-interest income affect <u>banks' crash probability</u>?

	In(p/1-p)	GLM	
Constant	-6.1822***	-6.0352***	
	[0.7003]	[0.5733]	
Commission and Fee	5.3362***	5.0109***	
income	[1.1764]	[1.0255]	
Trading Income	6.9497***	5.1616***	
	[2.1909]	[1.1925]	
Other Operating Income	3.1781	5.4674***	
	[3.0438]	[1.8268]	
Net Interest Margin	-36.4262	-29.0868***	
	[24.6465]	[11.0038]	
Size	0.6642***	0.5366***	
	[0.1152]	[0.1267]	
Equity-to-Assets	-4.6641*	-5.4703***	
	[2.4745]	[2.0252]	
Cost-to-Income	-1.7943	-1.5012*	
	[1.2009]	[0.8694]	
Return on Equity	1.709	1.2261	
	[2.3800]	[1.8739]	

Faculty of Economics

- coefficients change
- significance alters
- another example Kieschnick and McCullough Statistical Modelling 2003

2) The Lerner index

Lerner index: $(r_l - r) / r_l$

Refinement: mark-up consists of two components

1. Credit risk: $r^{ra} \ge r$ 2. Market power: $r_l \ge r^{ra}$

where: $1 + r = (1 + r^{ra}) \cdot (1 - PD) + (1 + r^{ra}) \cdot PD \cdot (1 - LGD)$

New Lerner index:
$$(r_l - r^{ra}) / r_l$$

2) The Lerner index

 $1 + r = (1 + r^{ra}) \cdot (1 - PD) + (1 + r^{ra}) \cdot PD \cdot (1 - LGD)$ $\Leftrightarrow r^{ra} = \frac{(r + PD \cdot LGD)}{(1 - PD \cdot LGD)}$

Endogeneity problem:

PD=defaulted comm'l loans over outstanding comm'l loans

- If PD decreases, LHS variable decreases
- But r^{ra} decreases as well, which increases Lerner index
- → Negative relationship between NPL and LI !
- ➔ Possible solution: proxy PD by e.g. business failure rate

Faculty of Economics

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

 $r^{ra} = \frac{(r + PD \cdot LGD)}{(1 - PD \cdot LGD)}$

PD varies over time

GENT

LGD is fixed at 45%: Why isn't this time varying?

- Trend: recovery rate may have changed in period 88-03
- Cycle: recovery rates may vary over business cycle

Is a negative Lerner index sustainable in the long-run? e.g. mean of LI for credit lines <0

3) Data-related issues

- Very rich dataset(s)!

UNIVERSITEI

- Geographical segmentation: provincial level
 - E.g.: weighted concentration measure
 - But not done consistently:
 - Weighted Lerner index?
 - Regional PD in computation of Lerner index?
 - Weighted GDP growth? Provincial Industrial prod. or unemployment rate
- From '93 onwards: upward trend in Lerner index (for loans) downward trend in NPL ratio

➔Non-stationarity, Panel unit root and cointegration tests

4) Boyd and de Nicolo

Faculty of Economics

• Franchise value paradigm

- Traditional theory to explain competition-stability trade-off
- Much empirical evidence
- Boyd and de Nicolo (2005): risk-shifting paradigm
 - Concentration-stability trade-off
 - Critical assumption: market power in lending market!
 - Empirical evidence: Boyd, de Nicolo and Al Jalal (2006)

Do the results conflict with Boyd and de Nicolo?

UNIVERSITE

4) Do the results conflict with Boyd and de Nicolo?

- Using the Lerner index for deposits: almost no significant effects
- Using the Lerner index for loans
 - Both linear and quadratic term are negative and significant
 - But: Methodology could be improved upon (GLM)

Spurious relationship (NPL affects Lerner index directly)

Crucial assumption of BdN: market power in lending market

4) Do the results conflict with Boyd and de Nicolo?

- Using the HHI-index for loans
 - Linear term: negative, significant
 - Quadratic term: positive, 15% sign.
 - Test them jointly!
 - Correlation inflates s.e.
- Turning point in relationship
 - ► HHI-Loans of 10
 - This sample: mean HHI=8.22
 Most banks in downward sloped part
 - · BdN sample 1: mean HHI=28.55
 - · BdN sample 1: mean HHI=26.51
 - ➔ Most banks in upward sloped part

Column 3 of Table 3				
Dependent variable	Ln(NPLit/(100- NPLit))			
Xit	Her_loans_firms			
Estimation method	GMM First Diff			
	Coefficient	t-statistic		
Ln(NPLit-1/(100- NPLit-1))	0.522	8.04 ***		
GDPGt	-0.151 -12.03 *			
GDPGt-1	-0.036	-2.21 **		
Xit	-0.215	-1.83 *		
Xit squared	0.01	1.48		
Share of the bank	-0.535	-2.69 ***		
Loans to firms/Total a	-0.028	-3.53 ***		
ROA	-0.025	-0.56		
No. Observations	1,262			

5) Minor issues

- Do you control for the impact of outliers?
 - The minima of the Lerner index are very low!
- Subsample stability: boom-busts
- Reverse causality between NPL and ROA
 - Use lagged ROA
- Franchise value paradigm: competition-> profits-> risk
 - What if concentration-profits relationship is not monotonic?
 - E.g.: Boyd and de Nicolo
 - Or Quiet life hypothesis
 - Joint hypotheses!

UNIVERSITEI

Conclusion

ATH MANAGER STREET, ST

Faculty of Economics

- Interesting topic!
- Unique datasets
- Some methodological improvements possible
- Careful interpretation of the results

Faculty of Economics

NAMES OF STREET, STREE

4) Boyd and de Nicolo

AND A PRIME PARTY AND A PRIME

Faculty of Economics

Column 3 of Table 3			Column 2 of Table 4		
Dependent variable	Ln(NPLit/(100- NPLit))		Dependent variable	Ln(NPLiit/NP Lit)	
Xit	Her_loans_firms		Xit	Her_deposits	
Estimation method	GMM First Diff		Estimation method	GMM First Diff	
	Coefficient	t-statistic		Coefficient	t-statistic
Ln(NPLit-1/(100- NPLit-1))	0.522	8.04 ***	Ln(NPLit-1/(100-NPLit 1))	0.498	7.30 ***
GDPGt	-0.151	-12.03 ***	GDPGt	-0.138	-11.11 ***
GDPGt-1	-0.036	-2.21 **	GDPGt-1	-0.046	-2.68 ***
Xit	-0.215	-1.83 *	Xit	0.161	2.43 **
Xit squared	0.01	1.48	Xit squared	-0.005	-3.15 ***
Share of the bank	-0.535	-2.69 ***	Share of the bank	-0.531	-2.87 ***
Loans to firms/Total a	-0.028	-3.53 ***	Loans to firms/Total as	-0.028	-3.86 ***
ROA	-0.025	-0.56	ROA	-0.013	-0.32
No. Observations	1,262		No. Observations	1,262	