

Monetary Policy and Financial (In)Stability: An integrated micro-macro approach

Ferre De Graeve Thomas Kick Michael Koetter

Ferre De Graeve – Monetary Policy & Financial (In)Stability

Motivation

- Recent interest in Financial Stability
 - Bank level stress-tests
 - · BIS

GENT

- · Partial
- Macro stress-tests
 - · Interaction:
 - · From macro to financial sector, and back

Motivation

- Frequently, Financial Stability Reports (e.g. ECB, 2006) and papers (e.g. Goodhart, 2006, JBF) state « wishlists »
 - i.e. aspects of the economy that one would like embedded in a macro stress test
- This paper can be viewed as an effort to address some of these aspects
 - Maintain the link with the micro bank level
 - Allow for feedback, possibly simultaneous
 - Structural interpretation of scenarios
 - Non-linearity

UNIVERSITEIT

Multiple types of risk

- Build on Jacobson, Lindé and Roszbach (2005, JFS), who:
 - Combine VAR

UNIVERSITEIT

- Swedish macroeconomy
- With micro model
 - · Firm default risk

ATHEN DIRECTORY STR. D

- Study effect of monetary policy shock
- Extend JLR in mainly two directions:
 - Interaction
 - · Simultaneous, agnostic
 - Application
 - · Banks (German)
 - · Disaggregate financial response
 - Of more direct relevance for financial stability

Structure of the talk

- The data
- The approach
- Results
- Implications

The data

- Outright bank defaults are only rarely observed
- We use supervisory data on German banks
 Bundesbank distress database
- Solves the problem of few observed defaults
- Allows a more precise inspection of problems in the banking sector:
 - Distressed events, rather than default
 - Captures different types of risk
 - Varying degree of severity

Distress data: Some examples

• Automatic signals (I)

 E.g. bank needs to notify the supervisor when facing substantial capital losses

- Supervisory warnings (II)
 E.g. admonishment hearings or warning letters
- Supervisory interventions (III)
 E.g. activity restrictions, fire CEO, capital injections
- Bank defaults (IV)
 - E.g. outright default, distressed M&A's

Year	All	Banking groups		Distress categories				
		$Com{}^{\prime}cl$	Sav's	$Coop{}'\!s$	Ι	II	III	IV
1995	1.9%	2.2%	0.3%	2.3%	0.1%	0.4%	0.8%	0.6%
1996	2.5%	4.9%	0.8%	2.8%	0.1%	0.4%	1.2%	0.7%
1997	3.4%	6.3%	0.9%	4.0%	0.1%	0.7%	0.9%	1.7%
1998	4.7%	7.5%	2.1%	5.3%	0.1%	1.4%	1.3%	1.9%
1999	5.6%	4.4%	0.7%	7.2%	0.2%	2.4%	0.9%	2.1%
$\boldsymbol{2000}$	5.0%	5.0%	1.6%	6.1%	0.1%	2.2%	1.0%	1.7%
$\boldsymbol{2001}$	6.9%	9.2%	2.2%	8.3%	0.8%	3.1%	1.1%	1.9%
$\boldsymbol{2002}$	7.0%	4.4%	3.4%	8.7%	1.2%	3.3%	0.9%	1.6%
2003	6.6%	4.7%	1.8%	8.8%	0.8%	3.4%	1.1%	1.3%
$\boldsymbol{2004}$	4.1%	0.8%	1.1%	5.8%	0.5%	2.5%	0.8%	0.3%

• Want to study empirical relation btw macro and financial sector

• Take most common model used for each purpose separately

- Macro: VAR
- Micro: logit
- And combine them

ATTACK AND A DECEMBER OF A DEC

• Monetary VAR:

· Output

- · Inflation
- · Interest rate
- \cdot Z=(Y,P,R)
- Add one exogenous variable:
 - Aggregate frequency of distress (D)
 - Measures (reduced form) feedback from financial sector to macro

•
$$Z(t)=A^*Z(t-1)+B^*D(t-1)+u(t)$$

- Logit: Probability of «bank distress»
- As a function of:
 - Bank specific covariates

· CAMEL

- Cross-sectional variation in distress
- Macro variables
 - · Same as in VAR (Y,P,R)
 - Time variation in distress
- D(t)=C*Z(t-1)+a(t)

The combined model

- Micro: D(t)=C*Z(t-1)+a(t)
- Macro: Z(t)=A*Z(t-1)+B*D(t-1)+u(t)
- Has a VAR type structure
 - $X(t) = G^*X(t-1) + e(t)$
 - Where X=(Y,P,R,D)
- Exploit this structure to identify structural shocks
 i.e. H*X(t) = K*X(t-1) + s(t)
- Simultaneity financial-macro wanted (H≠I)
- FS theory in early stage (H=?, K=?)
- We refrain from timing restrictions
 - Use sign-restrictions instead

Identification restrictions

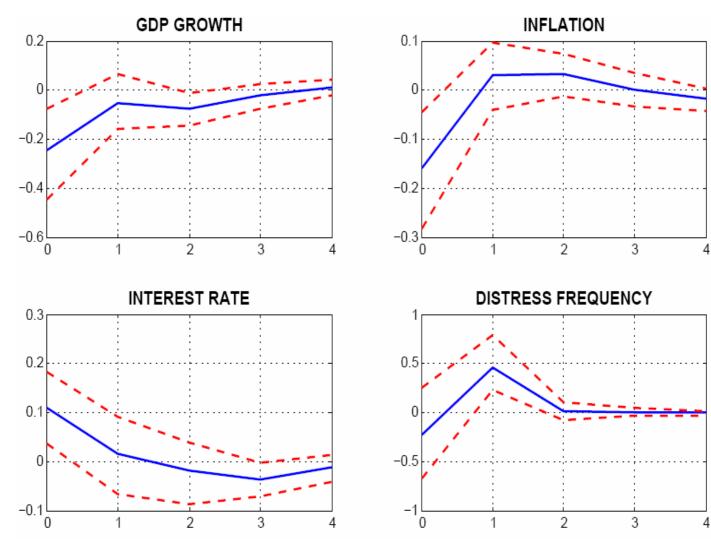
- Monetary policy shock
- Impose « what we know » happens after a policy shock:
- Y↓, P↓, R↑

• While remaining agnostic about timing and direction of distress (D) response, and its effects

Results

- Aggregate response to a MP shock
 - In a VAR on Y,P,R,D
 - In the combined micro-macro model
- Disaggregate responses to a MP shock
 - Per banking group
 - Per distress category
- Further evidence:
 - State-dependence

Traditional macro VAR



Ferre De Graeve – Monetary Policy & Financial (In)Stability

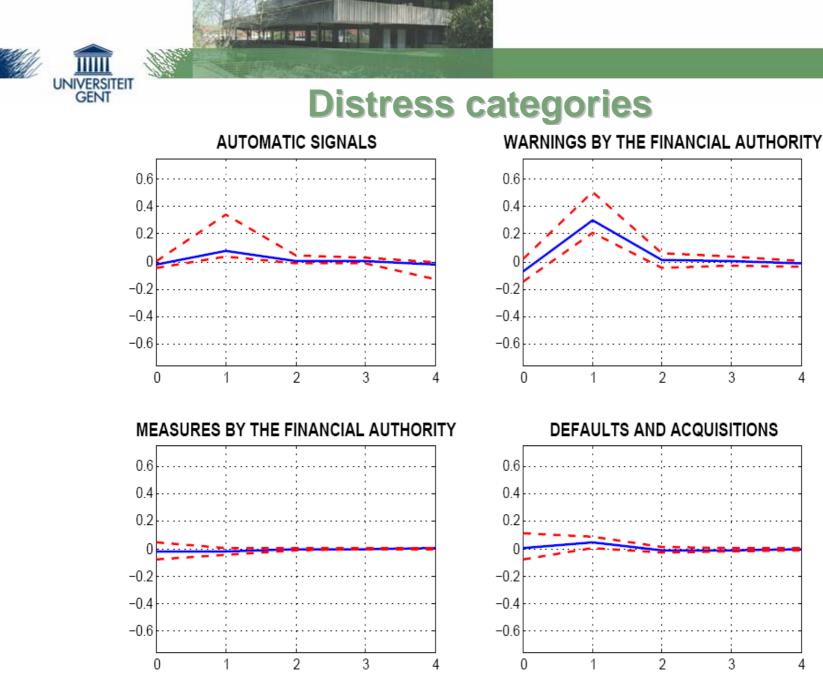
4

4

ANNE AND AN AN ART S IN A 128 M



- German banking system: Three-pillars
 - · Commercial banks
 - Savings banks


HAND MARKEN STR. 5 IN 113

- Cooperative banks
- Estimate separate risk model for each group of banks
 - · Note: big banks
- Distress measure covers many layers
 Estimate separate risk model for different types of distress

Distress per banking group

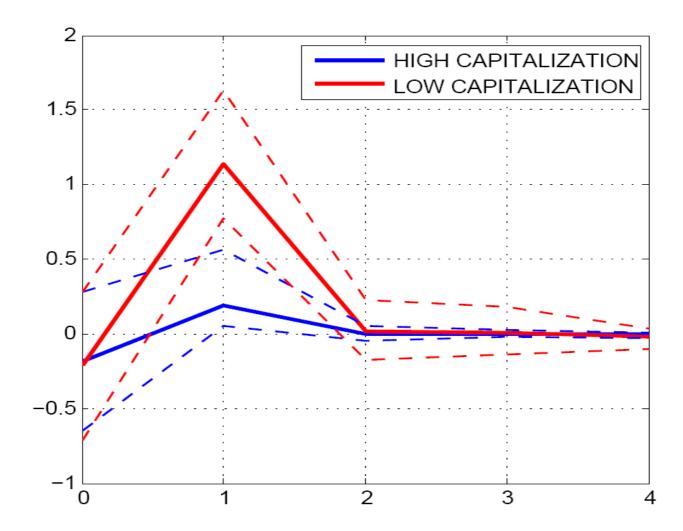
HARDING TO STR. 5 18 113 18

Ferre De Graeve – Monetary Policy & Financial (In)Stability

In sum

- The combined model reveals an increase in financial sector distress following a MP shock
- Most of the distress is borne by commercial and local cooperative banks
- The degree of distress is not too severe:
 - MP shocks

- Cause mostly warnings by the supervisor
- But do not seem to instigate supervisory interventions, nor bank default



State-dependence: An example

- Initial conditions matter:
 - State of the economy + financial sector
 - Affects the response
- Banking sector capitalization:
 - Idea behind Basel:
 - Capitalization increases resilience
 - Evaluate response to MP shock under different initial conditions

Banking sector capitalization

- Monetary policy affects banking sector stability
 - Reason for concern?

► Yes:

- MP shocks account for about 1/3 of variance of financial distress fluctuations
- ► No:
 - Degree of distress is not too severe (signals, warnings)
 - · Feedback to real economy is limited
- Capitalization (regulation?) increases resilience to shocks