

# Global macro-financial shocks and corporate sector expected default frequencies in the euro area

#### June 2007 Olli Castrén, Stephane Dées and Fadi Zaher

#### **Background: financial sector stress testing**



# **Motivation**

- The world has become more financially integrated and firms and banks are operating in the global marketplace
- Large euro area banks are active in corporate lending in many countries of the euro area; corporate borrowers are often large firms with global exposures
- A framework linking indicators of corporate sector credit quality to a global macroeconomic model is useful:
  - For large banks to calculate their capital buffers
  - For central banks and supervisors to assess resilience at systemic level

#### **Previous Literature on Macro-VARs & PDs**

- Pesaran et al. (2004): Conditional loss distributions of a credit portfolio in different regions of the world
- Alves (2005) and Shahnazarian and Åsberg-Sommer (2007): Corporate sector EDFs in a macroeconomic VAR model
- Jacobson et al. (2005): Interactions between firms' balance sheets & the evolution of the economy
- O Drehmann et al. (2005): Non-linear VAR for corporate sector credit risks
- Aspachs et al. (2006): Interaction between bank equity value & bank PDs and the UK macroeconomy

# **Our approach in a nutshell**

- To quantify the impact of domestic and global macroeconomic shocks on the aggregate and the sectoral EDFs of the euro area
- Combination of:
- 1) A structural default model (Moody's KMV based on the Merton (1974) approach)
- 2) An internal ECB macro-econometric model (Global VAR by Dées et al. (2007))
- Construct a linking equation to the GVAR model, which isolates the EDF from the global system
- The GVAR model + the linking equation of the EDF => Satellite GVAR model

# **Benefits of the Satellite approach**

- Can combine a complex global macro model with a simple equation for EDFs in one country, with possibly different time series length
- Isolates the credit risk assessment from the macro assessment, thus avoiding inference of complex and controversial feedbacks
- Can easily experiment with various specifications for the satellite equation (e.g. non-linearities, heterogeneity...), without messing up the features of the macro model

# A Primary of Global VAR (GVAR)

- Macroeconomic policy analysis and financial risk management require taking account of the increasing interdependencies that exist across markets and countries
- Also financial stability issues need to be considered from a global perspective; this invariably means that many different channels of transmission must be taken into account
- The GVAR provides a convenient and intuitive solution to the modeling of complex high dimensional systems
- Other possibilities: structural models and common factor models

# A Primary of Global VAR (GVAR)

• The GVAR approach models the interlinkages using trade-weighted observable macroeconomic aggregates and financial variables

• The GVAR is composed of individual country VARX\* models in which the core domestic variables are related to country-specific foreign variables

$$x_{it} = a_{i0} + a_{i1}t + \Phi_i x_{i,t-1} + \Lambda_{i0} x_{i,t}^*$$
$$+ \Lambda_{i1} x_{i,t-1}^* + \Psi_{i0} d_t + \Psi_{i1} d_{t-1} + \varepsilon_{it}$$

for *t*=1,2,...,*T* and *i*=0,1,2,...,*N*.

. .

# The Satellite model for EDFs

- Formulate an equation where the endogenous variables of the GVAR are exogenous variables to the Satellite model
- The endogenous variable *z<sub>t</sub>* in the Satellite model is the EDF for corporate sector *j*

$$z_{jt} = b_{j0} + b_{j1}x_t + \mathcal{E}_t$$

 In practice, the x<sub>t</sub> variables in the Satellite model are the domestic variables of the euro area block of the GVAR, expressed in first differences

#### **Satellite-GVAR: Four steps**

- 1) Estimate the GVAR
- 2) Subject the GVAR to shocks to generate impulse response functions (GIRs)
- 3) Separately, estimate the parameters of the Satellite model (we use 5 out of 7 factors)
- 4) Simulate the reactions of the endogenous variable of the Satellite model (EDFs) with the estimated parameters of the Satellite model and the shocks from the GVAR

#### Data

- GVAR data includes 33 countries with the euro area comprising 8 of the 11 countries that joined in 1999
- For each country in the GVAR, the variables include GDP, CPI, Equity price, USD FX, SR & LR interest rates. Oil price is a common (global) variable for all countries. Sample period 1979 Q1-2005 Q4
- Data on aggregate and 7 sectoral corporate EDFs in the euro area 1992-2005. Source: Moody's KMV
- The most parsimonius specification of the Satellite equation includes 5 of the 7 "risk factors" (exogenous variables) from the GVAR

# **Estimation of the Satellite model**

#### $EDF_{t} = \alpha + \beta_{1}\Delta GDP_{t} + \beta_{2}\Delta CPI_{t} + \beta_{3}\Delta EQ_{t} + \beta_{4}\Delta EP_{t} + \beta_{5}\Delta IP_{t}$

|      |      | Const | GDP    | INFL   | EQUITY | EP     | IR     |
|------|------|-------|--------|--------|--------|--------|--------|
| Aggr | beta | 0.853 | -0.350 | -0.054 | -0.018 | -0.028 | -0.010 |
|      | Pval | 0.000 | 0.040  | 0.823  | 0.020  | 0.077  | 0.228  |
| BaC  | beta | 0.663 | -0.285 | 0.161  | -0.014 | -0.012 | -0.007 |
|      | Pval | 0.000 | 0.006  | 0.268  | 0.003  | 0.198  | 0.146  |
| Сар  | beta | 1.167 | -0.465 | -0.097 | -0.022 | -0.034 | -0.011 |
|      | Pval | 0.000 | 0.030  | 0.749  | 0.025  | 0.089  | 0.268  |
| ССу  | beta | 0.679 | -0.266 | 0.018  | -0.015 | -0.017 | -0.006 |
|      | Pval | 0.000 | 0.022  | 0.915  | 0.005  | 0.120  | 0.270  |
| CNC  | beta | 0.520 | -0.117 | -0.100 | -0.010 | -0.012 | -0.003 |
|      | Pval | 0.000 | 0.235  | 0.485  | 0.026  | 0.206  | 0.558  |
| EnU  | beta | 0.160 | -0.047 | 0.031  | -0.005 | -0.002 | 0.000  |
|      | Pval | 0.000 | 0.080  | 0.421  | 0.000  | 0.332  | 0.737  |
| Fin  | beta | 0.168 | -0.030 | 0.081  | -0.003 | -0.002 | -0.001 |
|      | Pval | 0.000 | 0.118  | 0.005  | 0.001  | 0.196  | 0.404  |
| ТМТ  | beta | 2.385 | -1.179 | -0.831 | -0.062 | -0.135 | -0.038 |
|      | Pval | 0.006 | 0.108  | 0.433  | 0.066  | 0.052  | 0.272  |

#### Satellite model: goodness of fit



# **Summary: Satellite-GVAR results**

- On the aggregate Euro Area EDF level, the EDF reactions are most sensitive to shocks to:
  - 1) Global and euro area GDP
  - 2) Global equity prices
  - 3) Interest rates (short and long)
  - 4) Exchange rates
  - 5) Oil prices
- In general, most sectoral EDFs react similarly to the benchmark (i.e., the aggregate EDF case)
- BUT the technology sector EDF is more affected than the other EDFs in our sample period

#### **Satellite-GVAR reactions**



Note: graphs show deviations from the baseline profile

#### **Satellite-GVAR reactions**



Note: graphs show deviations from the baseline profile

# **Bootstrap simulation exercise**

- The Satellite-GVAR model, given a shock, is rejected if the EDF reaction falls outside the 90% confidence interval range at least once in the 40 quarters
- The results show that the model representing the aggregate EDFs is within the 90% confidence interval for all types of shocks.
- By contrast, for some sectors the model fit appears less satisfactory

#### **Future extensions**

- Exploit the distribution of sectoral EDFs (instead of only median EDFs) to find out possible effects of firm *heterogeneity*
- Further efforts to estimate a *non-linear* satellite equation

#### **Application: LCBGs credit portfolio losses**

- Data inputs: loan exposures, recovery rates, expected default rates and PD volatilities
- Use publicly available exposure data from 15 large EU banks, and Moody's KMV Expected Default Frequencies (EDF), shocked by the GVAR
- Losses estimated using the CreditRisk+ (CR+) model. This calculates the losses over a fixed one-year horizon for a given confidence interval and for a portfolio of individual exposures of which each has a low probability of defaulting

# **Results: a single shock scenario**

- Distribution of changes in banks' credit portfolio Value at Risk as a percentage of Tier 1, following various macro shocks
- An useful estimate for banks' economic capital, and the distribution of losses in the banking system



# Thank you