Frequency-domain analysis of debt service in a macro-finance model of the euro-area

Jean-Paul Renne¹

Frequency-domain research in Macroeconomics and Finance / BoF Workshop / Helsinki

20 October 2011

Jean-Paul Renne (Banque de France) Frequ. analysis in macro-fin. model

¹Banque de France. The views expressed in the following are those of the authors and do not necessarily reflect those of the Banque de France.

Objective

To propose a novel approach based on spectral analysis and Macro-Finance Affine Term Structure Models (MF-ATSM) that may contribute to a better taking into account of fiscal-insurance principles

Motivation What is debt management?

Figure: Debt management

3 / 22

Motivation Debt portfolio in G7 countries (1/2)

Source: OECD and national DMOs

Motivation Debt portfolio in G7 countries (2/2)

Figure: Share of inflation-linked bonds in total sovereign bond outstanding

Source: OECD and national DMOs

Motivation

About the relevance of fiscal insurance

- Faraglia, Marcet and Scott (2009): previous attempts of normative analysis (tax-smoothing or fiscal insurance) regarding optimal debt management lead to liabilities structures that are dramatically different from observed ones.
- When you try to derive optimal debt structures from normative frameworks, the results...
 - ... are not robust,
 - ... are often based on unrealistic government's abilities (e.g. to costlessly repurchase all outstanding debt at any period),
 - ... and often suggest that optimal asset positions are huge multiples of GDP (Buera and Nicoloni, 2004)

Tax smoothing:

The governments have an incentive to smooth taxes across time in order to minimize the excess burden stemming from distortionary taxes.

Motivation

About the relevance of fiscal insurance

- Should debt managers ignore tax-smoothing or fiscal insurance considerations?
 - About the extreme (and often practically unfeasible) results recommended by normative analysis: these may be interpreted as "direction" (Barro, 1999 and 2003, Bohn, 1990);
 - If not convinced about theoretical underpinnings of tax-smoothing, think of fiscal insurance as a form of Asset-Liability Management (ALM)
- While fiscal insurance principles do not constitute a primary concern for public debt managers, some DMOs have taken them into consideration at some point (see e.g. Coeuré, 2004 or Dudley, 2007)

From a practical point of view, what do we need?

The ability of public debt managers to include fiscal insurance principles into account depends on the availability of a framework that

- comprehends the joint modeling of macroeconomic variables and asset prices dynamics
- remains tractable (in order to make it possible to simulate a large number of strategies)
- models various funding-instrument prices

 \Rightarrow Associated with Macro-finance affine term-structure models, spectral analysis proves to be a relevant tool to represent and measure the funding-strategies performances

Methodology

The frequency-domain approach

On the long run, debt service is high when the primary deficit is high

 \rightarrow no long-run budget smoothing.

Methodology

The frequency-domain approach

On the short run, debt service is high when the primary deficit is low

 \rightarrow short-run budget smoothing.

Methodology Macro-Finance ATSM (1/2)

- ATSM are factor models of the yield curve, so only a small number of sources of variation underlie the pricing of the entire term structure of interest rates (Duffie and Kan, 1996)
- ATSM impose no-arbitrage restrictions: the dynamic evolution of yields over time and across state of nature is consistent with the cross-sectional shape of the yield curve (after accounting for risk)
- In macro-finance models (pioneered by Ang and Piazzesi, 2003), the factors are closely linked with macroeconomic variables

Methodology Macro-Finance ATSM (2/2)

- Ingredients:
 - The dynamics of factors (observable or not) F_t
 - ► The specifications of the pricing kernel m_{t+1} (or stochastic discount factor, SDF)
- Price P_t of an asset providing the payoff $g(F_T)$ in period T:

$$P_t = E_t \left(m_{t+1} m_{t+2} \dots m_{T-1} m_T g(F_T) \right)$$

 In Affine Term Structure Models (ATSM), zero-coupon bond yields of maturity τ are given by:

$$\begin{bmatrix} i_{1,t} \\ i_{2,t} \\ \vdots \\ i_{n,t} \end{bmatrix} = A + BF_t$$

Application

- The model is exploited in order to analyse the implications of specific funding strategies on the debt-service variability
 - The model makes it possible to analyze the pro- or counter-cyclicality of debt service that are associated with a given financing strategy
 - Cyclicality of debt service is key if debt management is aimed at fiscal insurance
- Financing-strategy performances are analysed in the frequency domain
 - Spectral analysis decomposes covariances into components at different frequencies
 - The approach leads to a comprehensive view of the variable (co-)dynamics

Figure: Frequency-domain properties of macroeconomic variables

Application Debt service analysis

- Once the frequency-domain representations of some variables are known, it is straightforward to carry out the frequency analysis of linear combinations of these variables and their lags
- This is exploited here in order to analyze the frequency domain properties of debt servicing

Examples

If (a) one chooses to fund an amount D of debt on a monthly basis and (b) the debt stock is not fed back by interest payments, then the debt service of the rolling strategy is proportional to $i_{1,t-1}$

Suppose that funding is based on 3-month bills and that the debt redemptions are evenly spread over the quarter, then interest payments are proportional to $1/3 \times (i_{3,t-1} + i_{3,t-2} + i_{3,t-3})$

- Assumptions:
 - Potential output GDP^{*}_t and bond issuances I_t, are assumed to grow at a constant positive pace of g%
- Defining a financing strategy consists in *determining what kinds of bonds are issued at each period in order to face the financing needs of government* (see e.g. Bolder, 2003)
- Only simple funding strategies, that consist in issuing a constant fraction of different types of bonds at each period, are considered
- In this context, the debt-to-GDP* ratio is constant

Figure: Frequency-domain properties of debt service

Application

Variance decomposition of debt service

- The unconditional variance of debt charges is more important when shorter-maturity bonds are issued
- The lower the maturity of bonds issued, the larger the share of debt service variations explained by business-cycle components
- At all frequencies, debt service is more variable when ILBs are issued
- The share of the debt-servicing variance explained by high-frequencies components tends to be higher when funding is based on ILBs
- Once those components whose period is lower than a year are removed, the differences in variances between nominal and inflation-linked bonds are less dramatic

Figure: Debt service and real activity: cospectrum and phase

Application

Covariance decomposition (debt service and real activity)

- The shorter the maturity of issued bonds, the larger the covariance between debt service and real activity
- While the correlation between real activity and debt service is negative when long-term nominal bonds (maturities > 5 yrs) are issued, it is positive if shorter-term nominal bonds or ILBs are issued
- When focussing on business-cycle frequencies, the correlations between real activity and interest payments are respectively equal to 0.17 and -0.18 for strategies that are based on 10-year ILBs and 10-year nominal bonds
- When issuing bills or ILBs, the phase difference (between debt service and real activity) is lower than a quarter of cycle, which makes debt charges pro-cyclical

Conclusion, improvements and extensions

- The approach suggests that issuing nominal short-term bonds or ILBs results in pro-cyclical debt service, which may contribute to smoothen the budget balance over the business cycle
- Limits of the approach:
 - > All series are assumed to be stationary, so are the simulated yields...
 - Funding requirements are exogenous
- The analysis could be carried out on a larger number of -possibly more sophisticated- strategies
- Optimization, for instance in a mean-variance framework: given relative preferences for "cost" and "risk", what should be the optimal debt structure?...

Thank you!

(The paper: Banque de France Working Paper Series No 261, available at www.banque-france.fr)

Specifications: The short-term rate

• The central bank sets the one-period nominal interest-rate $(i_{1,t})$, according to

where (~Taylor rule)

.

$$S_{t} = \rho_{S}S_{t-1} + (1 - \rho_{S})\left[g_{y}y_{t-1} + g_{\pi}(\pi_{t-1} - L_{t-1})\right] + \varepsilon_{S,t}$$

and

$$L_t = \rho_L L_{t-1} + (1 - \rho_L) \chi \pi_{t-1} + \varepsilon_{L,t}$$

Specifications: Phillips and IS curves

Phillips curve:

$$\widetilde{\pi}_t = \mathcal{L}_t + \alpha_{\pi} (\widetilde{\pi}_{t-1} - \mathcal{L}_{t-1}) + \alpha_y y_{t-1} + \varepsilon_{\pi,t}$$

• Investment-saving (IS) curve:

$$y_t = \beta_y(L)y_{t-1} - \beta_r(i_{1,t-1} - E_{t-1}(\widetilde{\pi}_t)) + \varepsilon_{y,t}$$

• These first equations form a VAR that reads:

$$F_t = \Psi F_{t-1} + \Sigma \varepsilon_t$$

• The stochastic shocks ε_t are assumed to be normally *i.i.d.*

Specifications: SDF and price of risk

• The stochastic discount factor (SDF) is given by

$$m_{t+1} = \exp\left[-\frac{1}{2}\Lambda'_t\Lambda_t - \Lambda'_t\varepsilon_{t+1} - \dot{n}_{1,t}
ight]$$

where the price of risk is given by

$$\Lambda_t = \lambda_0 + \lambda_1 F_t$$

• If $b_{j,t}$ denote the price of a nominal *j*-period zero-coupon bond, it is given by:

$$\ln b_{j,t} = \overline{A}_j + \overline{B}'_j F_t$$

where \overline{A}_j and \overline{B}_j are calculated numerically by solving a series of linear difference equations

• All yields are assumed to be observed with a measurement error

Data: Macroeconomic data

- The data cover the period from January 1999 to June 2009 at the monthly frequency (Eurozone data)
- Real activity is represented by the first principal component of a set of 5 business and consumer confidence indicators (source: European Commisson qualitative survey): industrial, construction, retail trade, service and consumer confidence
- The inflation series (HICP excl. tobacco, source: Eurostat) is seasonally adjusted using Census X12
- Inflation forecasts of the ECB Survey of Professional Forecasters are included amongst the estimation series (3 additional measurement equations: SPF forecasts = model-implied expectations + error term, for 1-, 2- and 5-year horizons)

Data: Interest rates

- Zero-coupon nominal and real (end-of-month) interest rates are derived from
 - Government-bond yields (bootstrap on a spline-smoothened French TEC yield curve) and
 - inflation swap quotes (source: Bloomberg)
- Real yields are obtained as the difference between nominal yields and inflation swap rates (corrected from lags inherent in Eurozone inflation swaps)
- The maturities of the zero-coupon bonds are as follows:
 - Nominal: 1, 3 and 6 months, 1, 2, 3, 5, 7 and 10 years
 - Real: 1, 2, 5 and 10 years

Estimation: A 2-step estimation procedure

- In the first step, the macro-model parameters (+ the SPF error-term standard deviation) are estimated by maximizing the log-likelihood (the log-L is obtained by applying the Kalman filter)
- Three parameters have been calibrated (the inflation parameter g_{π} entering the Taylor rule, the two parameters defining the dynamics of medium-term inflation, ρ_L and χ)
- In a second step, the state-space model is enlarged by adding nominal and real yields amongst the observed variables (the state-space model is enlarged; all yields are assumed to be measured with errors)
- The coefficients of the market price of risk (λ₁ matrix) that load on lagged macro variables are set to zero

Estimation: Missing-data treatment

- Missing-data problems stem from the fact that
 - real yields are only available from 2004 onwards
 - SPF inflation forecast are at the quarterly frequency
- For each period, the Kalman filter calculates a prediction of the state variables and computes the covariance matrix of the errors (prediction step)
- The filter then incorporates the new information given by the vector of observable variables (updating step)

 \Rightarrow The updating step can be carried out even if the number of observations varies with time

Estimation: Parameters

α_1	α_y	$\sigma_{\pi}_{ imes 10^{3}}$		β_1	eta_{4}	β_{r}	$\sigma_y \ imes 10^3$
0.21	0.043	1.52		1.14	-0.14	0.06	0.35
(0.05)	(0.013)	(0.1)		(0.04)	(0.04)	(0.03)	(0.02)
ρ_{S}	g_{π}	<i>g</i> y	$\sigma_{s}_{ imes 10^3}$		ρ_L	χ	$\sigma_{L} \ imes 10^3$
0.95	0.50	0.83	0.117		0.95	0.50	0.050
(0.018)	(-)	(0.24)	(0.009)		(-)	(-)	(0.01)
$\sigma_{3mth} top 10^4$	$\sigma_{{\it 6mth}} \over imes 10^{\it 4}}$	$\sigma_{1yr} \ imes 10^4$	$\sigma_{2yr} \ imes 10^4$	$\sigma_{3yr} \ imes 10^4$	$\sigma_{5yr} \ imes 10^4$	$\sigma_{7yr} \ imes 10^4$	$\sigma_{10yr} \ imes 10^4$
0.78	1.21	2.00	2.35	1.83	1.27	0.84	2.17
(0.05)	(0.08)	(0.13)	(0.15)	(0.12)	(0.09)	(0.08)	(0.15)
$\sigma^{\it r}_{1yr} \ imes 10^4$	$\sigma^{r}_{2yr} \ imes 10^{4}$	$\sigma^{r}_{5yr} \ imes 10^{4}$	$\sigma^{\it r}_{10yr} \ imes 10^{\it 4}$		$\sigma^{SPF}_{1yr}_{ imes 10^4}$	$\sigma^{SPF}_{2yr} \ imes 10^4$	$\sigma^{SPF}_{5yr} \ imes 10^4$
4.82	4.35	2.91	2.20		0.88	0.60	0.38
(0.44)	(0.37)	(0.26)	(0.2)		(0.13)	(0.07)	(0.05)

Jean-Paul Renne (Banque de France)

Variance decomposition of debt service

Bonds issued:	Nominal				Inde	Indexed	
	6-mth	1-yr	2-yr	5-yr	10-yr	5-yr	10-yr
Frequencies	Standard deviation of debt charges (in basis points)						
All	185	167	132	93	97	202	201
Business-cycle	96	84	58	16	9	66	67
Excl. infra-year	181	163	127	85	84	115	111
Cycle's length	Variance decomposition						
> 8 yrs	0.68	0.69	0.73	0.79	0.71	0.11	0.09
$1.5~{ m yr}$ $<< 8~{ m yrs}$	0.27	0.25	0.19	0.03	0.01	0.11	0.11
$1~{ m yr}$ $<<$ $1.5~{ m yr}$	0.01	0.01	0.01	0.02	0.03	0.10	0.11
< 1 yr	0.05	0.05	0.07	0.17	0.25	0.68	0.69

Covariance decomposition (debt service and real activity)

Bonds issued:	Nominal					Indexed	
	6-mth	1-yr	2-yr	5-yr	10-yr	5-yr	10-yr
Frequencies	Covaria	Covariance					
All	21.0	16.0	6.0	-1.0	0.1	3.0	4.0
Business-cycle	5.0	3.0	-1.0	-1.0	-0.2	0.9	2.0
Excl. infra-year	20.0	15.0	6.0	-2.0	-0.3	3.0	4.0
Frequencies	Correlation						
All	0.51	0.43	0.22	-0.07	0.00	0.06	0.09
Business-cycle	0.34	0.21	-0.12	-0.57	-0.18	0.09	0.17
Excl. infra-year	0.51	0.43	0.21	-0.10	-0.01	0.10	0.16

Figure: Spectral density: Illustration

Figure: Cospectrum of variables X and Y

Figure: Phase: illustration

Methodology

Macro-Finance ATSM

Example 1: Pricing of a 2-period bond • If

- Factors' dynamics: $F_t = \Psi F_{t-1} + \Sigma \varepsilon_t \ (\varepsilon_t \sim N(0, Id))$ Pricing kernel: $m_{t+1} = \exp \left[-\frac{1}{2}\Lambda'_t\Lambda_t - \Lambda'_t\varepsilon_{t+1} - i_{1,t}\right]$ with $\Lambda_t = \lambda_0 + \lambda_1 F_t$
- 1-period bond (short rate): $i_{1,t} = \delta F_t$
- Payoff: $g(F_{t+2}) = 1$, therefore $P_t = E_t (m_{t+1} \times m_{t+2} \times 1)$

Methodology Macro-Finance ATSM

Example 2: Pricing of a 1-period inflation-linked bond

- The framework makes it possible to price inflation-linked bonds (ILBs) as soon as inflation is one of the factors F_t .
 - Let's inflation $\pi_t = ln(CPI_t/CPI_{t-1})$ be the first component of F_t ,
 - then $\pi_t = \Gamma F_t$ where $\Gamma = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}$.

• Payoff:
$$g(F_{t+1}) = rac{CPl_{t+1}}{CPl_t}$$
, therefore $P_t = E_t\left(m_{t+1} imes rac{CPl_{t+1}}{CPl_t}
ight)$

$$\Rightarrow i_{1,t} - r_{1,t} = \underbrace{\Gamma \Psi F_t}_{\substack{expected \\ inflation \\ (= E_t(\pi_{t+1}))}} \underbrace{-\frac{1}{2} \Gamma \Sigma \Sigma' \Gamma'}_{adjustment} \underbrace{-\Gamma \Sigma (\lambda_0 + \lambda_1 F_t)}_{risk}$$

Figure: Yield fit

Figure: Model properties: Risk premiums

Jean-Paul Renne (Banque de France) Frequ. analysis in macro-fin. model

Application

Spectral analysis: basics

- Time series = Weighted sum of many cosine or sine functions of time with different periodicities
- The spectral density (function of frequency ω): measures the importance of the ω -frequency component in the variance of a given variable
- The cross-spectral density: complex function whose real and imaginary part are respectively called cospectrum and quadrature spectrum (in polar coordinate form: gain $R(\omega)$ and phase $\varphi(\omega)$)
- The cospectrum is proportional to the portion of the covariance between two variables that is attributable to cycles with frequency ω

Figure: Model structure

The model broadly follows the lines of Rudebusch and Wu's (2008) model

Figure: Estimation data

Application Debt service analysis

A financing strategy that consists in issuing at each period a constant fraction, defined by weights w_p (with $p \in \{1, ..., q\}$), of τ_p -period bonds results in the following debt service (in percentage of GDP^*):

$$\eta_{t} = \gamma \sum_{p=1}^{q} w_{p} \sum_{j=1}^{\tau_{p}} \frac{\vartheta_{\tau_{p}, t-j}}{(1+g)^{j}},$$

$$\underbrace{Affine \text{ in}}_{\text{the factors } F_{t}}$$

with

• $\vartheta_{\tau_p,t-j} = i_{\tau_p,t-j}$ if class-*p* bonds are nominal τ_p -period bonds and $\vartheta_{\tau_p,t-j} = r_{\tau_p,t-j} + \tilde{\pi}_t$ if class-*p* bonds are τ_p -period ILBs and • $\gamma = I_t/GDP_t^*$

43 / 22