Is There a Contagion? A Frequency-Domain Analysis of Stock Market Comovements During the Subprime Crisis

Alexei G. Orlov

Radford University

Frequency Domain Research in Macroeconomics and Finance Bank of Finland, October 2011

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

æ

ヘロト 人間 とくほ とくほとう

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

 examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology

イロト イポト イヨト イヨト

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

- examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology
- If frequency-domain-based test for contagion

< AP

▶ < ∃ ▶ < ∃ ▶

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

- examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology
- If frequency-domain-based test for contagion
- Preliminary results:

▶ < ∃ ▶ < ∃ ▶

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

- examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology
- If frequency-domain-based test for contagion
- Preliminary results:
 - the subprime crisis is found to be manifest in greater comovements along high-frequency components

• • = • • = •

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

- examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology
- If frequency-domain-based test for contagion

• Preliminary results:

- the subprime crisis is found to be manifest in greater comovements along high-frequency components
- calculated changes in the high-frequency portion of the covariance indicate a contagion for the majority of pairs of countries

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
•	000	000	00	0000000	000000000	00
Overv	iew					

- examine comovements of international stock markets before and during the subprime mortgage crisis using cross-spectral methodology
- If frequency-domain-based test for contagion

• Preliminary results:

- the subprime crisis is found to be manifest in greater comovements along high-frequency components
- calculated changes in the high-frequency portion of the covariance indicate a contagion for the majority of pairs of countries
- Implications for international portfolio management: changes in comovements (e.g., Calvet, Fisher and Thompson, 2006)

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	●00	000	00	0000000	000000000	00
Introd	uction					

• Interdependencies the international stock markets; tranquil and crisis periods

< ∃⇒

▶ ◀ ⋽ ▶

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	●00	000	00	0000000	000000000	00
Introd	uction					

- Interdependencies the international stock markets; tranquil and crisis periods
- Subprime crisis provides a convenient natural experiment for studying international spillovers

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	●00	000	00	0000000	000000000	00
Introd	uction					

- Interdependencies the international stock markets; tranquil and crisis periods
- Subprime crisis provides a convenient natural experiment for studying international spillovers
- Cross-spectral analysis complements a conventional time-domain framework

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	●00	000	00	0000000	000000000	00
Introd	uction					

- Interdependencies the international stock markets; tranquil and crisis periods
- Subprime crisis provides a convenient natural experiment for studying international spillovers
- Cross-spectral analysis complements a conventional time-domain framework
- Proposed test for contagion avoids biases associated with the correlation breakdown tests

• • = • • = •

Second-moment analyses can produce spurious results

Higher correlation *per se* should not necessarily indicate a contagion, as one expects higher correlations during periods of high volatility (e.g., Bekaert, Harvey and Ng, 2005)

Correlation coefficients are conditional on market volatility \Rightarrow simple correlation coefficients may be biased (e.g., Forbes and Rigobon, 2002)

The paper overcomes the biases that heteroskedasticity brings to the tests for contagion

イロト 不得 トイヨト イヨト

• Suppose stock market covolatility is higher for the tranquil

- Suppose stock market covolatility is higher for the tranquil
 - the change in the macroeconomic environment does not affect the stock market interdependencies?

• • • • • • • • • • • •

- Suppose stock market covolatility is higher for the tranquil
 - the change in the macroeconomic environment does not affect the stock market interdependencies?
 - what if during the crisis most of the covolatility can be accounted for by the high-period components?

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- Suppose stock market covolatility is higher for the tranquil
 - the change in the macroeconomic environment does not affect the stock market interdependencies?
 - what if during the crisis most of the covolatility can be accounted for by the high-period components?
- Suppose correlation coefficient does not change

- Suppose stock market covolatility is higher for the tranquil
 - the change in the macroeconomic environment does not affect the stock market interdependencies?
 - what if during the crisis most of the covolatility can be accounted for by the high-period components?
- Suppose correlation coefficient does not change
 - the interdependence of financial markets is immune to changes in the economic environment?

▶ ◀ ⋽ ▶

- Suppose stock market covolatility is higher for the tranquil
 - the change in the macroeconomic environment does not affect the stock market interdependencies?
 - what if during the crisis most of the covolatility can be accounted for by the high-period components?
- Suppose correlation coefficient does not change
 - the interdependence of financial markets is immune to changes in the economic environment?
 - what if the weight is shifted away from the trend component of covariance and toward irregular components?

イロト イポト イヨト イヨト

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	●00	00	0000000	000000000	00
Contag	gion					

No consensus regarding a single theoretical or empirical procedure to identify a contagion (e.g., Forbes and Rigobon, 2001, Pericoli and Sbracia, 2003, Bekaert, Harvey and Ng, 2005)

Recent studies acknowledge that contagion should be characterized by "abnormally" high comovements

This paper: (i) "volatility spillovers" and (ii) significant increase in comovements

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	○●○	00	0000000	000000000	00
Fundar	mentals?					

No consensus on the definition of economic fundamentals, and that fundamentals are likely to be country-specific (Bekaert, Harvey and Ng, 2005)

Fundamentals-based models of contagion usually have low explanatory power (Fratzscher, 2003); weak link between financial volatility and macroeconomic variables (Calvet, Fisher and Thompson, 2006); model specification

 \Rightarrow need a pragmatic approach

★ ∃ > < ∃ >

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	○○●	00	0000000	000000000	00
Extant	tasts for	contagion				

- latent factor model (Dungey, Fry, González-Hermosillo and Martin, 2002): parameters depend on the change in volatility between noncrisis and crisis periods
- correlation test (Forbes and Rigobon, 2002): compares (unconditional) correlations of asset returns
- dummy variables (Favero and Giavazzi, 2002): how outliers in the data for one country affects return equations for other countries
- fixed time effects (Baur and Fry, 2009)
- coskewness-based test (Fry, Martin and Tang, 2010)

A (10) A (10)

Overview	Tests for contagion	Data	Methodology	Conclusions
		00		

Data: 27 international stock market indices, 2005–2009

Country	Stock Market Index*	Stock Returns*						
		Mean	Median	Min	Max	St. Dev.	Skewness	Kurtosis
Argentina	Merval Buenos Aires (MERV)	0.04	0.14	-12.95	10.43	1.99	-0.62	8.39
Austria	Viena ATX	0.01	0.13	-10.25	12.02	1.93	-0.30	8.43
Belgium	Bel-20 Brussels (BFX)	-0.02	0.02	-8.32	12.08	1.47	0.18	12.84
Brazil	IBOVESPA Sao Paolo (BVSP)	0.08	0.16	-12.10	13.68	2.12	-0.03	8.18
Canada	TSX Composite index (Toronto)	0.02	0.11	-9.79	9.37	1.49	-0.66	10.96
China	Shanghai Composite (SSE)	0.07	0.12	-9.26	9.03	2.00	-0.34	5.65
France	CAC 40 Paris	0.00	0.04	-9.47	10.59	1.53	0.08	11.51
Germany	DAX	0.03	0.11	-7.43	10.80	1.50	0.16	11.67
Hong Kong	Hang Seng index	0.04	0.08	-13.58	13.41	1.92	0.09	11.05
India	BSE SENSEX Bombay (BSE 30)	0.08	0.15	-11.60	15.99	1.96	0.08	8.76
Indonesia	Jakarta Composite (JKSE)	0.08	0.17	-10.95	7.62	1.66	-0.66	8.94
Israel	Tel Aviv TV-100 IND	0.05	0.02	-10.54	9.71	1.59	-0.46	7.90
Italy	Milan MIBTEL	-0.04	0.06	-8.60	10.37	1.39	-0.06	12.15
Japan	Nikkei 225	-0.01	0.05	-12.11	13.23	1.75	-0.45	11.75
Malaysia	Kuala Lumpur (KLSE)	0.03	0.05	-12.97	12.79	1.05	-0.96	46.25
Mexico	IPC (MXX)	0.07	0.17	-7.27	10.44	1.62	0.16	7.42
Netherlands	Amsterdam AEX General	0.00	0.08	-9.59	10.03	1.57	-0.21	12.26
New Zealand	NZ-50 Gross Index (NZ50)	0.01	0.04	-4.94	5.81	0.86	-0.29	7.16
Norway	Oslo Exchange	0.05	0.20	-9.71	9.19	1.92	-0.63	7.40
Singapore	Straits Times Index (STI)	0.03	0.07	-9.22	7.53	1.45	-0.34	8.67
S. Korea	Seoul Composite (KS11)	0.05	0.16	-11.17	11.28	1.62	-0.59	10.04
Spain	Madrid IGBM (SMSI)	0.02	0.10	-9.68	9.87	1.45	-0.16	11.36
Sweden	Stockholm General	0.02	0.09	-7.38	8.63	1.54	0.03	7.69
Switzerland	Swiss SMI	0.01	0.07	-8.11	10.79	1.30	0.08	11.59
Taiwan	Taiwan Weighted (TWII)	0.05	0.16	-11.17	11.28	1.62	-0.59	10.04
UK	TSE 100	0.01	0.06	-9.26	9.38	1.41	-0.13	11.52
US	S&P 500	0.00	0.08	-9.47	10.96	1.51	-0.24	13.13

"The indexes are daily adjusted closing prices between January 2005 and December 2009.

'Daily log-differences.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Overview	Tests for contagion	Data	Methodology	Conclusions
		00		

Data: levels and returns

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	●0000000	000000000	00
Cospe	ectral Ana	alvsis				

- Determine the relative importance of cycles of different frequencies in accounting for stock market comovements
- Before and during the subprime mortgage crisis
- Copectral methods do not require specification of a model \Rightarrow the results are not based on rigid modeling assumptions

П

▶ < ∃ ▶ < ∃</p>

 Overview
 Introduction
 Tests for contagion
 Data
 Methodology
 Results
 Conclusions

 0
 000
 000
 000
 000
 000
 000
 000

 Cospectral Analysis

Any covariance-stationary process x_t can be expressed as the Fourier transform decomposition of x_t :

$$x_t = \bar{x} + \sum_{k=1}^{m} \left[a_k \cos\left(\omega_k t\right) + b_k \sin\left(\omega_k t\right) \right]$$

n is the number of observations, \bar{x} is the mean value of *x*, *m* is the number of frequencies in the Fourier decomposition, a_k are the cosine coefficients, b_k are the sine coefficients, and ω_k are the Fourier frequencies ($\omega_k = \frac{2\pi k}{n}$)

 \Rightarrow the value of x_t is a weighed sum of periodic functions of different amplitudes and wavelengths

イロト イポト イヨト イヨト

Overview Introduction Tests for contagion Data Methodology Results Conclusions 0 000 000 000 000 000 000 000 Cospectral Analysis

Calculate amplitude cross-periodograms J_k^{xy} for each pair of countries:

$$J_k^{xy} = rac{n}{2} \left(a_k^x a_k^y + b_k^x b_k^y
ight) + i rac{n}{2} \left(a_k^x b_k^y - b_k^x a_k^y
ight)$$
 ,

 J_k^{xy} shows the contribution of the *k*th harmonic to the total covariance between two data series

To produce less volatile and more consistent estimates of the cross-spectrum a triangular kernel is used to smooth the real part of cross-periodogram ordinates

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	000●0000	000000000	00
Cospe	ctral Ana	alvsis				

J

- Compare the cospectra (the real components of the cross-spectra) for all pairs of countries for the two periods
- The cross-spectrum $s_{xy}(\omega)$ integrates to the unconditional covariance
- The area under the cospectrum is equal to the covariance between \boldsymbol{x} and \boldsymbol{y}

П

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	○○○●○○○	000000000	00
Chang	tes in cov	ariance due	e to hi	igh freque	ncies	

Calculate the percent change in cospectral density due to high frequencies after the onset of the crisis

The irregular components of stock market covariance are expected to become relatively more important during a crisis

Covariances between the stock market returns are positive at some frequencies and negative at others

▶ < ∃ ▶ < ∃ ▶</p>

Changes in covariance due to high frequencies

Percent change in high-frequency covariance:

$$\Delta COV^{high} = \frac{COV^{high}_{crisis} - COV^{high}_{tranquil}}{COV^{high}_{tranquil}} sign\left(COV^{high}_{tranquil}\right) \cdot 100$$

 $COV_{crisis}^{high} = 2 \int_{\omega_1}^{\pi} \hat{c}_{xy}(\omega) d\omega$ is the portion of the covariance of stock market returns that is attributed to cycles with frequencies greater than or equal to ω_1

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	○○○○○●○	000000000	00

Changes in covariance due to high frequencies

To calculate the contribution of various frequencies, we multiply the cospectral density $\hat{c}_{xy}(\omega_k)$ by $\frac{4\pi}{n}$, where *n* is the number of observations in a time series, and sum over the relevant frequencies

Compare the contributions of frequencies $\omega \ge 0.45$ (4 weeks)

Overview		Tests for contagion	Data	Methodology		Conclusions
0	000	000	00	0000000	000000000	00

• $COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$

・ 御 ト ・ 臣 ト ・ 臣 ト …

Overview	Tests for contagion	Data	Methodology	Conclusions
			0000000	

•
$$COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$$

• the comovement becomes weaker during the crises ⇒ the negative sign; the doubling of the absolute value of the covariance produces the correct 100% change in absolute value

Overview	Tests for contagion	Data	Methodology	Conclusions
			0000000	

•
$$COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$$

- the comovement becomes weaker during the crises ⇒ the negative sign; the doubling of the absolute value of the covariance produces the correct 100% change in absolute value
- the ordinary percent change formula would have registered an increase in covariance

Overview		Tests for contagion	Data	Methodology		Conclusions
0	000	000	00	0000000	000000000	00

•
$$COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$$

- the comovement becomes weaker during the crises ⇒ the negative sign; the doubling of the absolute value of the covariance produces the correct 100% change in absolute value
- the ordinary percent change formula would have registered an increase in covariance

$$OV_{tranquil}^{high} = -1, COV_{crisis}^{high} = 1 \Rightarrow \Delta COV^{high} = 200\%$$

Overview		Tests for contagion	Data	Methodology		Conclusions
	000	000	00	0000000	000000000	00

•
$$COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$$

- the comovement becomes weaker during the crises ⇒ the negative sign; the doubling of the absolute value of the covariance produces the correct 100% change in absolute value
- the ordinary percent change formula would have registered an increase in covariance

$$2 \quad COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = 1 \Rightarrow \Delta COV^{high} = 200\%$$

• the formula gives us a 200% percent change, which conforms to both the numerics and the fact that the covariance has gone up

Overview		Tests for contagion	Data	Methodology		Conclusions
0	000	000	00	0000000	000000000	00

•
$$COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = -2 \Rightarrow \Delta COV^{high} = -100\%$$

- the comovement becomes weaker during the crises ⇒ the negative sign; the doubling of the absolute value of the covariance produces the correct 100% change in absolute value
- the ordinary percent change formula would have registered an increase in covariance

$$2 \quad COV_{tranquil}^{high} = -1, COV_{crisis}^{high} = 1 \Rightarrow \Delta COV^{high} = 200\%$$

- the formula gives us a 200% percent change, which conforms to both the numerics and the fact that the covariance has gone up
- the ordinary percent change formula would have registered a spurious -200% change

イロト イポト イヨト イヨト

Overview	Tests for contagion	Data	Methodology	Results	Conclusions
				00000000	

Cospectral Densities

Stock Market Comovements in Frequency Domain

æ

Overview	Tests for contagion	Data	Methodology	Results	Conclusions
				00000000	

Cospectral Densities

Overview	Tests for contagion	Data	Methodology	Results	Conclusions
				00000000000	

Cospectral Densities

-

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	000●00000	00
Cospe	ectral Der	nsities				

- Spectral densities for most countries are larger during the crisis
- Cospectral densities are several orders of magnitudes smaller during the crisis for geographically distant countries
- Crisis period is characterized by much more volatile spectra and cospectra at both high and low frequencies
- For many pairs of countries the crisis manifested itself in greater comovements particularly along the high-frequency components
- The low-frequency (or trend) components are relatively more important during the tranquil period

< A⊒ > < ∃ > < ∃

Overview	Tests for contagion	Data	Methodology	Results	Conclusions
				000000000	

Is there a contagion?

Country	Brazil	China	Germany	India	Indonesia	Japan
Country Brazil China Germany India Indonesia Japan Malaysia Mexico Dhiliaminan	Brazil 38 ^C 53 ^C -116 86 ^C 293 ^C -13 808 ^C 909 ^C 1608 ^C	China -85 358^{C} 42^{C} -1082 134^{C} -395 -39 08	Germany 63 ^C -3017 -2220 35 ^C -122 -424 570 ^C	India -2 1000 ^C -233 -1063 -1804 009 ^C	Indonesia 121215 ^C 11417 ^C 291770 ^C 17053 ^C 77172 ^C	Japan 198' 1025' 313'
Singapore S. Korea Thailand	423 ^C 543 ^C 23 ^C	$-98 \\ -80 \\ 649^{C} \\ -137$	70 ^C -685 200 ^C	-270 5357 ^C -8597	112899 ^C 270456 ^C 74082 ^C	558 ⁶ 219 ⁶ 222 ⁶

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	00000●000	00
Comp	arison of	time- and f	reaue	encv dom	ain resu	lts

Т

J

Percent change in overall v. high-frequency covariances

 $[0.9, 1.1] \Rightarrow \text{accurate}; <0 \Rightarrow \text{spurious}$

П

< ∃ >

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	000000●00	00
Compa	arison of	time- and f	reque	ency dom	ain resu	lts

Country	Brazil	China	Germany	India	Indonesia	Japan
Brazil	1.24 ^I					
China	1.53 ^I	0.99 ^A				
Germany	5.52 ^I	1.10^{A}	1.05^{A}			
India	0.66 ^I	0.36^{I}	44.86^{I}	0.45^{I}		
Indonesia	-0.88^{S}	1.51^{I}	1.24^{I}	-1.58^{S}	0.92^{A}	
Japan	-0.22^{S}	0.74^{I}	0.75^{I}	-4.64^{S}	0.87^{I}	0.95^{A}
Malaysia	1.16 ^I	2.06^{I}	-1.40^{S}	0.55^{I}	0.78^{I}	0.80^{I}
Mexico	1.01 ^A	4.98^{I}	1.14^{I}	4.27^{I}	0.79^{I}	1.00^{A}
Philippines	1.28^{I}	1.23^{I}	0.59^{I}	0.98^{A}	0.64^{I}	0.03^{I}
Singapore	1.18^{I}	1.54^{I}	0.54^{I}	3.04^{I}	0.94^{A}	0.87^{I}
S. Korea	0.28^{I}	0.72^{I}	0.99^{A}	0.63^{I}	0.03^{I}	0.49^{I}
Thailand	-3.78^{S}	1.47^{I}	0.64^{I}	-3.02^{S}	1.01^{A}	0.88^{I}

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 二臣 … 釣ぬび

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	0000000●0	00
Comp	arison of	time- and f	reque	ency dom	ain resu	lts

Percent change in overall v. high-frequency covariances

 $[0.9, 1.1] \Rightarrow \text{accurate}; <0 \Rightarrow \text{spurious}$

< ∃ >

Checks robustness of the results w.r.t.:

- starting date of the financial crisis (July 1, 2007)
- choice of the cut-off frequency ($\omega \ge 0.45$)
- cut-off for the percent change in the high-frequency covariance (10%)

• • • • • • • • • • • •

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	000000000	●○
Conclu	isions					

- Cospectrum-based test for contagion
- Complements time-domain techniques
- Stronger interdependencies during crisis
- Cospectral densities are several orders of magnitudes smaller during the crisis for geographically distant countries (similar sets of fundamentals, more trade/investment interdependencies?)

Overview	Introduction	Tests for contagion	Data	Methodology	Results	Conclusions
0	000	000	00	0000000	000000000	○●
Exton	ione					

Capital controls

Links that facilitate transmission of a crisis (e.g., international trade, exchange rate changes, liquidity effects, common creditors)

International portfolio management

.