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Summary

We contribute to the unit root literature on three different fronts.

• First, we propose a unified spectral approach to unit root testing;

• Second we provide a spectral interpretation of existing unit root tests, and finally,

• We propose higher order wavelet filters to capture low-frequency stochastic trend parsimo-

niously and gain power against near unit root alternatives.



1 Granger (1966) – Spectral Shape

• As Granger (1966) pointed out, the vast majority of economic variables, after removal of
any trend in mean and seasonal components, have similar shaped power spectra where the
power of the spectrum peaks at the lowest frequency with exponential decline towards higher
frequencies.

• The power spectrum measures the contribution of the variance at a particular frequency band
relative to the overall variance of the process. If a particular band contributes substantially
more to the overall variance relative to another frequency band, it is considered an important
driver of this process.
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Figure 1: Spectrum of white noise and AR(1) processes. (a) White noise (b) AR(1) with φ = 0.5 (c) AR(1) with φ → 1 (d)
AR(1) with φ → −1.
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• Since Nelson and Plosser (1982) argued that this persistence was captured by modeling the
series as having a unit autoregressive root, designing tests for unit root has attracted the
attention of many researchers.

• The well-known Dickey and Fuller (1979) unit root tests have limited power to separate a
unit root process from near unit root alternatives in small samples.

• Phillips (1986) and Phillips (1987) pioneered the use of the functional central limit theorem
to establish the asymptotic distribution of statistics constructed from unit root processes.

• To construct unit root tests with serially correlated errors, one approach is due to Phillips
(1987) and Phillips and Perron (1988) by adjusting the test statistic to take account for the
serial correlation and heteroskedasticity in the disturbances. The other approach is due to
Dickey and Fuller (1979) by adding lagged dependent variables as explanatory variables in
the regression.

• Other important contributions are Chan and Wei (1987), Park and Phillips (1988), Park and
Phillips (1989), Sims et al. (1990), Phillips and Solo (1992) and Park and Fuller (1995).
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• In general, unit root tests cannot distinguish highly persistent stationary processes from
nonstationary processes and the power of unit root tests diminish as deterministic terms are
added to the test regressions.

• For maximum power against very persistent alternatives, Elliott et al. (1996) (ERS) use a
framework similar to Dufour and King (1991) (DK) to derive the asymptotic power envelope
for point-optimal tests of a unit root under various trend specifications.

• Ng and Perron (2001) exploits the finding of ERS and DK to develop modified tests with
enhanced power subject to proper selection of a truncation lag.

• Most existing unit root tests make direct use of time domain estimators of the coefficient
of the lagged value of the variable in a regression with its current value as the dependent
variable, except the Von Neumann variance ratio (VN) tests of Sargan and Bhargava (1983)
and their extensions.

• Cai and Shintani (2006) provide alternative VN tests based on combinations of consistent
and inconsistent long run variance estimators. Phillips and Xiao (1998) and Stock (1999)
provide a helpful review of the main tests and an extensive list of references.
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• In this paper, we develop a general wavelet spectral approach to testing unit roots inspired
by Granger (1966). The method of wavelets decomposes a stochastic process into its com-
ponents, each of which is associated with a particular frequency band.

• The wavelet power spectrum measures the contribution of the variance at a particular fre-
quency band relative to the overall variance of the process. If a particular band contributes
substantially more to the overall variance relative to another frequency band, it is considered
an important driver of this process.

• By decomposing the variance of the underlying process into the variance of its low frequency
components and that of its high frequency components via the discrete wavelet transforma-
tion (DWT), we design wavelet-based unit root tests.
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• Since DWT is an energy preserving transformation and able to disbalance energy across
high and low frequency components of a series, it is possible to isolate the most persistent
component of a series in a small number of coefficients referred to as the scaling coefficients.

• Our tests utilize the scaling coefficients of the unit scale. In particular, we construct test
statistics from the ratio of the energy from the unit scale to the total energy (variance) of
the time series. We establish asymptotic properties of our tests, including their asymptotic
null distributions, consistency, and local power properties.

• Our tests are easy to implement, as their asymptotic null distributions are nuisance parameter
free and the corresponding critical values can be tabulated.

• The Monte Carlo simulations are conducted to compare the empirical size and power of our
tests to the Elliott et al. (1996) (ERS) and Ng and Perron (2001) (MPP) tests. Our tests
have good size and comparable power against near unit root alternatives in finite samples.
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• The DWT is an orthonormal transformation which may be relaxed through an oversampling
approach termed as the maximum overlap DWT (MODWT), Percival and Mofjeld (1997).

• The MODWT goes by several names in the literature, such as the stationary DWT by Nason
and Silverman (1995) and the translation-invariant DWT by Coifman and Donoho (1995).
A detailed treatment of MODWT can be found in Percival and Walden (2000) and Gençay
et al. (2001).

• Thus, orthogonality of the transform is lost but it has been shown that the wavelet variance
utilizing MODWT coefficients is more efficient than the one obtained through the orthonormal
DWT.

• Percival (1995) gives the asymptotic relative efficiencies for the wavelet variance estimator
based on the orthonormal DWT compared to the estimator based on the MODWT. We
generalize our tests to the MODWT setting to utilize these efficiency gains.
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2 Wavelets

• A wavelet is a small wave which grows and decays in a limited time period. The contrasting
notion is a big wave such as the sine function which keeps oscillating indefinitely.

• Let ψ(.) be a real valued function such that its integral is zero,

∫ ∞

−∞
ψ(t) dt = 0, (1)

and its square integrates to unity,

∫ ∞

−∞
ψ(t)2 dt = 1. (2)

• While Equation (2) indicates that ψ(.) has to make some excursions away from zero, any
excursions it makes above zero must cancel out excursions below zero due to Equation (1),
and hence ψ(.) is a wave, or a wavelet.
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LA(8)

D(8)

D(4)
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Figure 2: Daubechies wavelet filters of lengths L ∈ {2, 4, 8} for level j = 6. From top to bottom, the first three rows are
extremal phase Daubechies compactly supported wavelets (the Haar wavelet is equivalent to the D(2)), while the last row is a
least asymmetric Daubechies compactly supported wavelet.
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• Properties of the continuous wavelet functions (filters), such as integration to zero and unit energy, Equa-

tions (1) and (2), have discrete counterparts.

• Let h = (h0, . . . , hL−1) be a finite length discrete wavelet filter such that it integrates (sums) to zero

L−1∑

l=0

hl = 0 (3)

and has unit energy
L−1∑

l=0

h2
l = 1. (4)

• In addition to Equations (3) and (4), the wavelet (or high-pass) filter h is orthogonal to its even shifts;

that is,

L−1∑

l=0

hlhl+2n =

∞∑

l=−∞
hlhl+2n = 0, for all nonzero integers n. (5)

• These conditions state that a wavelet filter should sum to zero, must have unit energy and must be

orthogonal to its even shifts. Equations (4) and (5) are known as the orthonormality property of wavelet
filters.
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• The natural object to complement a high-pass filter is a low-pass (scaling) filter g. By
applying both h and g to an observed time series, we can separate high-frequency oscillations
from low-frequency ones. We will denote a low-pass filter as g = (g0, . . . , gL−1).

• The basic properties of the scaling filter are

L−1∑

l=0

gl =
√

2 (6)

L−1∑

l=0

g2
l = 1 (7)

L−1∑

l=0

glgl+2n =
∞∑

l=−∞
glgl+2n = 0, (8)

for all nonzero integers n, and

L−1∑

l=0

glhl+2n =

∞∑

l=−∞
glhl+2n = 0 (9)

for all integers n. Equation (6) states that scaling coefficients are local weighted averages.
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• The filter sequences {hl} and {gl} are high-pass and low-pass filters, respectively.

• Let H(f ) be the transfer (or gain) function of {hl} defined via the discrete Fourier transform
(DFT); i.e.,

H(f ) =
L−1∑

l=0

hl exp(−i2πfl),

and let G(f ) be the discrete Fourier transform of {gl}.

• Displaying the squared gain functions H(f ) and G(f ) = |G(f )|2 illustrates the frequency
range captured by the wavelet and scaling filters.

• A band-pass filter has a squared gain function that covers an interval of frequencies and then
decays to zero as f → 0 and f → 1/2.

• We may construct a band-pass filter by recursively applying a combination of low-pass and
high-pass filters.
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Figure 3: Squared gain functions for ideal filters (solid line) and their wavelet approximations (dotted line). The shaded regions represent leakage,
meaning frequencies outside the nominal pass-band persist in the filtered output. (a) An ideal high-pass filter (solid line) over the frequency interval
f ∈ [1/4, 1/2] and its approximation via the D(4) wavelet filter (dotted line). (b) An ideal low-pass filter over f ∈ [0, 1/4] and its approximation via
the D(4) scaling filter. (c) An ideal band-pass filter over f ∈ [1/8, 1/4] and its approximation via the second scale D(4) wavelet filter.
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• The Haar wavelet filter is an excellent benchmark to illustrate {hj,l} and {gj,l}.

• It is a filter of length L = 2 that can be succinctly defined by its scaling (low-pass) filter
coefficients

g0 = g1 =
1√
2
,

• Or equivalently by its wavelet (high-pass) filter coefficients

h0 = 1/
√

2 and h1 = −1/
√

2

through the inverse quadrature mirror relationship.

• Although the Haar wavelet filter is easy to visualize and implement, it is a poor approximation
to an ideal band-pass filter.
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Figure 4: Frequency-domain representations of the Haar wavelet filter. Each plot shows the squared gain function corresponding
to the wavelet coefficient vectors. An ideal band-pass filter would only exhibit positive values on the frequencies between the
dotted lines. Frequencies with positive weight H(f) > 0 outside of the dotted lines (shaded regions) indicate poor approximation
of the Haar wavelet filter to an ideal band-pass filter. This is also known as leakage.



2.1 Daubechies Wavelets

• The Daubechies (1992) wavelet filters represent a collection of wavelets that improve on
the frequency-domain characteristics of the Haar wavelet and may still be interpreted as
generalized differences of adjacent averages.

• Daubechies derived these wavelets from the criterion of a compactly supported function with
the maximum number of vanishing moments.1 In general, there are no explicit time-domain
formulae for this class of wavelet filters.

• Daubechies first choose an extremal phase factorization,2 whose resulting wavelets we denote
by D(L) where L is the length of the filter.

• An alternative factorization leads to the least asymmetric class of wavelets, which we denote
by LA(L).3

1A function ψ(t) with P vanishing moments satisfies
∫
tpψ(t)dt = 0, where p = 0, 1, . . . , P − 1.

2The term extremal (or minimum) phase spectral factorization is associated with a solution to the roots of |H(f)| that are all inside the unit circle
(Daubechies, 1992, Ch. 6).

3Symmetric filters are known as linear phase filters in the engineering literature. The degree of asymmetry for a filter may therefore be measured
by the deviation from linearity of its phase. Least asymmetric filters are associated with a phase that is as close to linear as possible (Daubechies,
1992, Ch. 8).
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• The D(4) wavelets have a simple expression in the time domain via

h0 =
1 −

√
3

4
√

2
, h1 =

−3 +
√

3

4
√

2
, h2 =

3 +
√

3

4
√

2
and h3 =

−1 −
√

3

4
√

2
.
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Figure 5: Frequency-domain representations of the LA(8) wavelet filter. Each plot shows the squared gain function corresponding
to the wavelet coefficient vectors. Frequencies with positive weight H(f) > 0 outside of the dotted lines (shaded regions)
correspond to the leakage associated with this approximation to an ideal band-pass filter. The filters associated with these
squared gain functions suffer from much less leakage than the Haar wavelet filters.



2.2 Discrete wavelet transformation

• In principle, wavelet analysis can be carried out in all arbitrary time scales.

• This may not be necessary if only key features of the data are in question, and if so, discrete
wavelet transformation (DWT) is an efficient and parsimonious route as compared to the
continuous wavelet transformation.

• The DWT is a subsampling of W (λ, t) with only dyadic scales, i.e., λ is of the form 2j−1, j =
1, 2, 3, . . . and, within a given dyadic scale 2j−1, t’s are separated by multiples of 2j.
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• Let y = {yt}T
t=1 be a dyadic length vector (T = 2M) of observations where M = log2(T ).

The length T vector of discrete wavelet coefficients w is obtained by

w = Wy,

where W is a T × T real-valued orthonormal matrix defining the DWT which satisfies
WTW = IT (T × T identity matrix).4

• The vector of wavelet coefficients may be organized into M + 1 vectors,

w = [w1,w2, . . . ,wM ,vM ]T , (10)

where wj is a vector of wavelet coefficients associated with changes on a scale of length
λj = 2j−1 and vM is a vector of scaling coefficients associated with averages on a scale of
length 2M = 2λM .

4Since DWT is an orthonormal transform, orthonormality implies that y = WT
w and ||w||2 = ||y||2.
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Figure 6:
yt = xt + ut where xt is sin(0.3t) for t = 1, 2, . . . , 200, 2sin(0.2t) for t = 201, 202, . . . , 400 and ut ∼ N(0, 1.2). It is a third level

MODWT decomposition with S16 filter.
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2.3 Analysis of variance

• The orthonormality of the matrix W implies that the DWT is a variance preserving transformation where

‖w‖2 = V 2
t,M +

M∑

j=1



T/2j∑

t=1

W 2
t,j


 =

T∑

t=1

y2
t = ‖y‖2 .

• This can be easily proven through basic matrix manipulation via

‖y‖2 = yTy = (Ww)TWw

= wTWTWw = wTw = ‖w‖2 .

• Given the structure of the wavelet coefficients, ‖y‖2 is decomposed on a scale-by-scale basis via

‖y‖2 =

M∑

j=1

‖wj‖2 + ‖vM‖2 , (11)

where ‖wj‖2 is the sum of squared variation of y due to changes at scale λj and ‖vM‖2 is the information

due to changes at scales λM and higher.
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• The motivation behind a wavelet based unit root test can be illustrated through the energy
(variance) decomposition of the process.

• For a white noise process,

‖vJ‖2 / ‖y‖2

is close to zero whereas

‖vJ‖2 / ‖y‖2

is close to one for a unit root process.

• Since a unit root process can be succinctly approximated by a few scaling coefficients and
the energy of the scaling coefficients is almost equal to the total energy of the data, our
statistical test for a unit root process is based on this principle of energy decomposition.
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3 New Unit Root Tests — No Drift Case

• Let {yt}T
t=1 be a univariate time series generated by

yt = ρyt−1 + ut, (12)

where {ut} is a weakly stationary zero-mean error with a strictly positive long run variance
defined by ω2 ≡ γ0 + 2

∑∞
j=1 γj where γj = E(utut−j).

• In this section, we consider tests for

H0 : ρ = 1 against H1 : |ρ| < 1.

• Therefore, under the alternative hypothesis, {yt} is a zero-mean stationary process with the
long run variance ω2

y = (1 − ρ)−2 ω2.
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3.1 The first test — Haar filter and the DWT of unit scale

• Consider the unit scale Haar DWT of {yt}T
t=1 where T is assumed to be even.

• The wavelet and scaling coefficients are given by

Wt,1 =
1√
2
(y2t − y2t−1), t = 1, 2, . . . , T/2, (13)

Vt,1 =
1√
2
(y2t + y2t−1), t = 1, 2, . . . , T/2. (14)

• The total energy of {yt}T
t=1 is given by the sum of the energies of {Wt,1} and {Vt,1}.

• Since for a unit root process, the total energy of the scaling coefficients {Vt,1} dominates
that of the wavelet coefficients {Wt,1} , we propose the following test statistic:

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1

. (15)

• Heuristically, under H0, ŜT,1 should be close to 1, since
∑T/2

t=1 V
2
t,1 dominates

∑T/2
t=1 W

2
t,1,

while under H1, ŜT,1 should be much smaller than 1.
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Lemma 3.1 UnderH0, ŜT,1 = 1+op(1), while underH1, ŜT,1 =
E(y2t+y2t−1)

2

E(y2t+y2t−1)2+E(y2t−y2t−1)2
+

op(1).

Note that:

E(y2t + y2t−1)
2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
=

E
(
V 2

t,1

)

E
(
V 2

t,1

)
+ E

(
W 2

t,1

) < 1.

We conclude that it is the relative magnitude of the energy of the scaling coefficients to that
of the wavelet coefficients that determines the power of the test based on ŜT,1 and we expect

our test based on ŜT,1 to have power against H1.

The asymptotic distribution of ŜT,1 under H0 is summarized in the following theorem.

Theorem 3.2 Under H0, T (ŜT,1 − 1) = − γ0

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1), where λ2
v = 4ω2.

The proof of Theorem 3.2 makes it clear that it is the energy of the scaling coefficients that
drives the asymptotic behavior of ŜT,1 under the null hypothesis.
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• There are two unknown parameters in the asymptotic null distribution of ŜT,1: γ0 = E(u2
2t) and λ2

v or ω2.

To estimate these parameters, we let ût = yt − ρ̂yt−1 denote the OLS residual. Then γ̂0 = T−1
∑T

t=1 û2
t is

a consistent estimator of γ0. Being the long run variance of {ut} , ω2 can be consistently estimated by a
nonparametric kernel estimator with the Bartlett kernel:

ω̂2 = 4γ̂0 + 2

q∑

j=1

[1 − j/(q + 1)]γ̂j ,

where q is the bandwidth/lag truncation parameter and γ̂j = T−1
∑T

t=j+1 ûtût−j .

• Let λ̂2
v = 4ω̂2 and define the test statistic as

FG1 =
Tλ̂2

v

γ̂0

[
ŜT,1 − 1

]
.

• Then under the null hypothesis, the limiting distribution of the test statistic FG1 is given by the distribution

of

− 1∫ 1

0 [W (r)]2dr
.

• Draw a large sample of i.i.d. random numbers from N(0, 1) denoted as {zi}Ni=1. Compute the following
quantity:

−1

N−2
∑N

i=1

(∑i
s=1 zs

)2 .

to approximate the null limiting distribution of FG1.
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3.2 General filter case: unit scale decomposition

• Let {hl}L−1
l=0 be an even length L sequence of Daubechies compactly supported wavelet filter

coefficients.

Theorem 3.3 (i) ŜL
T,1 = 1 + op(1) under the null hypothesis of unit root and ŜL

T,1 =

cL + op(1) under the alternative hypothesis with cL =
EV 2

t,1

EV 2
t,1+EW 2

t,1
< 1; (ii)

(
T
2

)
(ŜL

T,1 − 1) =

− EW 2
t,1

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1) under the null hypothesis.

• It implies that a consistent test for unit root can be based on ŜL
T,1. Theorem 3.3(ii) extends

Theorem 3.2 from the Haar filter to any Daubechies compactly supported wavelet filter of
finite length.
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• Since as the length of the filter L increases, the approximation of the Daubechies wavelet
filter to the ideal high-pass filter improves5, we expect tests based on ŜL

T,1 to gain power as
L increases.

• On the other hand, as L increases, the number of BI wavelet and scaling coefficients will
decrease which would have an adverse effect on the power of our tests. It might be possible
to choose L based on some power criterion function, but this is beyond the scope of this
paper.

• Define the test statistic:

FGL
1 =

(
T

2

)
λ̂2

v

υ̂2
y,1

[
ŜT,1 − 1

]
.

Under the null hypothesis, the limiting distribution of FGL
1 is the same as that of FG1.

5Percival and Walden (2000) provides an excellent discussion on this.
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3.3 Tests against trend stationarity

yt = α + ρyt−1 + ut, (16)

where {ut} satisfies Assumption 1.

• Note that under H0, model (16) implies that yt = y0 + αt +
∑t

j=1 uj. Thus yt has a linear
deterministic trend and a stochastic trend.

• Under the alternative, however, model (16) implies that the process {yt} is a stationary
process with a non-zero mean.

• If one tests H0 against the alternative hypothesis of a (linear) trend stationary process, then
the above tests may not have power. To deal with trend stationary alternatives, components
representation of a time series is often used and detrending performed.6

6See Schmidt and Phillips (1992), Phillips and Xiao (1998), and Stock (1999). Phillips and Xiao (1998) also have a detailed discussion on efficient
detrending for general trends. For ease of exposition, we restrict ourselves to non-zero mean and linear trend cases only.
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• The process {yt} is of the form:

yt = µ + αt + ys
t , (17)

where {ys
t} is generated by model (12).

• Under H0 : ρ = 1, {ys
t} is a unit root process while under H0 : |ρ| < 1, {ys

t} is a zero mean
stationary process.

• If α = 0, we consider the demeaned series {yt − y} , where y = T−1
∑T

t=1 yt is the

sample mean of {yt}. If α 6= 0, we work with the detrended series
{
ỹt − ỹ

}
, where

ỹt =
∑t

j=1

(
∆yj − ∆y

)
and ỹ is the sample mean of {ỹt}, in which ∆yt = yt − yt−1 and

∆y is the sample mean of {∆yt} .7

7Alternative expressions for the detrended series
{
ỹt − ỹ

}
can be found in Schmidt and Phillips (1992).
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• Let
{
WM

t,1

}
and

{
V M

t,1

}
denote respectively the unit scale DWT wavelet and scaling coeffi-

cients of the demeaned series {yt − y}.
• We will construct our tests based on

ŜLM
T,1 =

∑T/2
t=1(V

M
t,1 )2

∑T
t=1(yt − y)2

.

• Similarly, let
{
W d

t,1

}
and

{
V d

t,1

}
denote respectively the unit scale DWT wavelet and scaling

coefficients of the detrended series
{
ỹt − ỹ

}
.

• We will construct our tests based on

ŜLd
T,1 = −

∑T/2
t=1(V

d
t,1)

2

∑T
t=1(ỹt − ỹ)2

.

Theorem 3.4 UnderH0, we have: (i) T
(
ŜLM

T,1 − 1
)

=⇒ − E(WM
t,1 )2

2ω2
∫ 1
0 [Wµ(r)]

2
dr

; (ii) T
(
ŜLd

T,1 − 1
)

=⇒

− E(W d
t,1)

2

2ω2
∫ 1
0 [Vµ(r)]

2
dr

. We have: (i) T
(
ŜLM

T,1 − 1
)

=⇒ − E(WM
t,1 )2

2ω2
∫ 1
0 [JMc (r)]

2
dr

; (ii) T
(
ŜLd

T,1 − 1
)

=⇒

− E(W d
t,1)

2

2ω2
∫ 1
0 [Jdc (r)]

2
dr

, where JM
c (r) =

∫ r

0
exp {(r − u)c} dWµ(u) and Jd

c (r) =
∫ r

0
exp {(r − u)c} dVµ(u).
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4 Maximum Overlap DWT

• MODWT has been demonstrated to have advantages over DWT in several situations includ-
ing the estimation of wavelet variance.8

• It is interesting to note that when the Haar wavelet filter is used,

ŜLM
T,1 = 1 −

∑T/2
t=1(y2t − y2t−1)

2/2∑T
t=1(yt − y)2

.

• This expression resembles that of the Sargan and Bhargava (1983) and Bhargava (1986)
test.

• In fact, we can obtain the Sargan and Bhargava (1983) and Bhargava (1986) test from an

extension of ŜLM
T,1 by using MODWT instead of DWT.

8See Allan (1966), Howe and Percival (1995), Percival (1983), Percival and Guttorp (1994) and Percival (1995).
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• To see this, we recall that apart from a factor of
√

2, the unit scale MODWT wavelet and
scaling coefficients of {yt − y} are given by

W̃t,1 =
L−1∑

l=0

hlyt−l mod T , Ṽt,1 =
L−1∑

l=0

gl (yt−l mod T − y) , (18)

where t = 1, . . . , T . It is easy to see that the DWT coefficients are obtained from the
corresponding MODWT coefficients via downsampling by 2.

• At each scale, there are T MODWT wavelet coefficients and T MODWT scaling coefficients.
Let

S̃LM
T,1 =

∑T
t=1 Ṽ

2
t,1∑T

t=1 Ṽ
2
t,1 +

∑T
t=1 W̃

2
t,1

.

With the Haar wavelet filter, apart from one coefficient Ṽ 2
1,1 in the numerator, S̃LM

T,1 reduces
to

S̃LM
T,1 = 1 −

∑T
t=2(yt − yt−1)

2

∑T
t=1(yt − y)2

,

so that
(
1 − S̃LM

T,1

)
with the Haar wavelet filter is the VN ratio used in Sargan and Bhargava

(1983).
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5 Testing for Cointegration

• The unit root tests developed in the previous sections can be extended to residual-based tests
for cointegration in the same way that other unit root tests have been extended, see e.g.,
Phillips and Ouliaris (1990) and Stock (1999).

• In this section, we provide such an extension for the no-drift case using unit scale DWT.
Extensions for other cases are straightforward.

• Our notation and formulation here are similar to those in Phillips and Ouliaris (1990). Let
{zt} be an (m + 1)-dimensional multivariate time series generated by an integrated process
of the form:

zt = zt−1 + ξt,

• Let Ω denote the long run variance-covariance matrix of {ξt}. Under Assumption 2, it is

known that T−1/2
∑[Tr]

t=1 ξt =⇒ B(r), where B(r) is (m+ 1)-vector Brownian motion with
covariance matrix Ω. We now partition zt = (y1t, y

′
2t)

′ into the scalar variable y1t and the
m-dimensional vector y2t.
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• Consider the linear cointegrating regressions:

y1t = β̂ ′y2t + ût,

where β̂ is the OLS estimator of β in the regression of y1t on y2t. We now extend our tests
for unit root based on unit scale DWT developed in Subsection 3.2 to the corresponding
tests for no-cointegration. In particular, we use:

ĈD
L

T,1 = −
∑T/2−1

t=L1
Ŵ 2

t,1∑T
t=1 û

2
t

,

where
{
Ŵt,1

}
is the unit scale wavelet coefficients of {ût} .

Theorem 5.1 Under the null hypothesis of no-cointegration,

T
(
ĈD

L

T,1

)
=⇒ −

η′V ar(W z
t,1)η

ω11.2

∫ 1

0 Q
2(r)dr

,

where η′ = (1,−a′21A−1
22 ) and

{
W z

t,1

}
is the unit scale wavelet coefficient of {zt} .

• Both η and ω11.2 depend on the long run covariance matrix Ω. We now discuss its estimation.
Let ξ̂t denote the OLS residual in the regression: zt = Π̂zt−1 + ξ̂t. Then similar to the
estimation of the long run variance ω2, we can use a nonparametric kernel estimator with
the Bartlett kernel to estimate Ω.
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Figure 7: Limiting and Empirical Distributions of ŜLM
T,1

The limiting distribution of − 1
R

1

0
[Wµ(r)]2dr

for 1 million replications. The empirical distribution of bSLM
T,1 is with T = 100 and 200 observations and for 5,000 replications. The

simulated data for the null distribution is generated from yt = µ + ys
t , where ys

t = ys
t−1 + ut , ut ∼ iidN(0,σ2) and y0 ∼ N(0,1).
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Figure 8: Limiting and Empirical Distributions of ŜLd
T,1

The limiting distribution of − 1
R

1

0
[Wµ(r)]2dr

for 1 million replications. The empirical distribution of bSLd
T,1 is with T = 100 and 200 observations and for 5,000 replications. The

simulated data for the null distribution is generated from yt = µ + αt + ys
t , where ys

t = ys
t−1 + ut, ut ∼ iidN(0, σ2) and y0 ∼ N(0,1).
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Level
1% 5% 10%

FGL
1

-29.04 -17.75 -13.09

ŜLM
T,1

-40.38 -27.38 -21.75

ŜLd
T,1

-50.77 -36.54 -30.23

FGL
1 is the wavelet test for no drift. ŜLM

T,1 and ŜLd
T,1 are the wavelet tests for trend stationary alternatives without and with

linear trends, respectively. Entries are based on one million Monte Carlo replications.

Table 1: Critical Values of Wavelet Tests
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

ŜLM
T,1 ERS MPP

γ = −0.80

1.00 0.009 0.068 0.119 0.014 0.047 0.097 0.011 0.045 0.099
0.99 0.982 0.997 0.998 0.156 0.401 0.587 0.144 0.402 0.610
0.98 1.000 1.000 1.000 0.451 0.702 0.827 0.443 0.704 0.840

γ = −0.50

1.00 0.006 0.045 0.103 0.011 0.051 0.102 0.011 0.049 0.108
0.99 0.668 0.871 0.937 0.148 0.396 0.569 0.141 0.393 0.592
0.98 0.984 1.000 1.000 0.487 0.746 0.846 0.479 0.748 0.863

γ = 0.00

1.00 0.006 0.046 0.087 0.013 0.052 0.099 0.011 0.052 0.106
0.99 0.153 0.486 0.687 0.163 0.423 0.596 0.156 0.416 0.611
0.98 0.683 0.954 0.991 0.488 0.741 0.846 0.495 0.743 0.855

γ = 0.50

1.00 0.006 0.038 0.085 0.015 0.055 0.112 0.013 0.053 0.118
0.99 0.069 0.316 0.543 0.168 0.422 0.605 0.162 0.417 0.619
0.98 0.374 0.845 0.953 0.475 0.715 0.844 0.473 0.721 0.856

γ = 0.80

1.00 0.007 0.031 0.056 0.013 0.048 0.098 0.011 0.048 0.097
0.99 0.021 0.189 0.386 0.155 0.405 0.585 0.148 0.402 0.601
0.98 0.198 0.668 0.883 0.460 0.708 0.821 0.454 0.712 0.833

Table 2: Size and Power of the ŜLM
T,1 - Demeaned Series with Serially Correlated Errors

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The data generating process is yt = µ + ys
t , where

ys
t = ρys

t−1 + ut, ut = γut−1 + εt εt ∼ iidN(0,1), µ = 1 and y0 = 0. Under the null ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the bSLM
T,1 test are

tabulated in Table 1. The bandwidth is set to 20 with the Bartlett kernel in the calculation of the long-run variance of the wavelet test. The lag length of the ERS and MPP

test regressions are determined by minimizing the modified AIC with the maximum lag length of 12. All simulations are with 1,000 observations and 5,000 replications.



ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

ŜLd
T,1 ERS MPP

γ = −0.80

1.00 0.006 0.058 0.121 0.008 0.043 0.093 0.007 0.043 0.084
0.99 0.878 0.968 0.989 0.041 0.185 0.341 0.039 0.163 0.324
0.98 0.996 1.000 1.000 0.224 0.581 0.753 0.232 0.551 0.732

γ = −0.50

1.00 0.052 0.044 0.096 0.013 0.485 0.102 0.012 0.046 0.096
0.99 0.745 0.926 0.971 0.056 0.222 0.383 0.059 0.208 0.363
0.98 0.976 0.998 0.999 0.335 0.672 0.824 0.345 0.649 0.813

γ = 0.00

1.00 0.002 0.041 0.072 0.011 0.049 0.104 0.011 0.048 0.097
0.99 0.332 0.643 0.795 0.069 0.242 0.399 0.073 0.225 0.377
0.98 0.783 0.946 0.978 0.338 0.666 0.815 0.349 0.651 0.801

γ = 0.50

1.00 0.001 0.039 0.056 0.008 0.052 0.103 0.011 0.049 0.096
0.99 0.055 0.245 0.415 0.076 0.262 0.419 0.081 0.246 0.394
0.98 0.267 0.649 0.825 0.312 0.647 0.789 0.320 0.626 0.773

γ = 0.80

1.00 0.005 0.040 0.052 0.014 0.055 0.104 0.015 0.052 0.096
0.99 0.007 0.069 0.175 0.074 0.260 0.389 0.076 0.245 0.367
0.98 0.053 0.303 0.521 0.288 0.594 0.761 0.298 0.582 0.752

Table 3: Size and Power of the ŜLd
T,1 - GLS Detrended Series with Serially Correlated Errors

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The data generating process is yt = µ+αt+ys
t , where

ys
t = ρys

t−1 + ut, ut = γut−1 + εt εt ∼ iidN(0,1), µ = 1, α = 1 and y0 = 0. Under the null ρ = 1 and under the alternative ρ < 1. The asymptotic critical values of the bSLd
T,1

test are tabulated in Table 1. The bandwidth is set to 20 with the Bartlett kernel in the calculation of the long-run variance of the wavelet test. The lag length of the ERS and

MPP test regressions are determined by minimizing the modified AIC with the maximum lag length of 12. All simulations are with 1,000 observations and 5,000 replications.



6 Conclusions

• Our unit root tests provide a novel approach in disbalancing the energy in the data by
constructing test statistics from its lower frequency dynamics.

• In our tests, the intuitive construction and simplicity are worth emphasizing. The simulation
studies demonstrate the comparable power of our tests with reasonable empirical sizes.

• Several extensions of our tests are possible. First, our tests make use of the unit scale DWT
only (J = 1) and hence of the energy decomposition of {yt} into frequency bands [0, 1/2]
and [1/2, 1]. Heuristically, these tests are suitable for testing a unit root process against
alternatives that have most energy concentrated in the frequency band [1/2, 1].

• To distinguish between a unit root process and a ‘strongly’ dependent process that has sub-
stantial energy in frequencies close to zero, we need to further decompose the low frequency
band [0, 1/2]. DWT of higher scales (J > 1) provides a useful device. The choice of J thus
depends on the energy concentration of the alternative process against which the unit root
hypothesis is being tested.
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• Second, we show in the paper that the Sargan and Bhargava test is a special case of wavelet
based tests with MODWT using unit scale Haar wavelet filter.

• MODWT has proven to have advantages over DWT in various situations including wavelet
variance estimation. It would be interesting to see if it also has advantages in the context of
testing unit root.

• Thirdly, the unit root tests developed in this paper can be extended to residual-based tests
for cointegration in the same way that other unit root tests have been extended, see e.g.,
Phillips and Ouliaris (1990) and Stock (1999).
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