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Introduction

New FD technique developed by researchers at NASA

Most economists blissfully unaware of Empirical Mode Decomposition
(EMD) and Hilbert-Huang Transform (HHT)

Adaptive data method

Purely empirical
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Introduction

Very few applications in economics -

Huang and Shen (2005) to mortgage interest rates;

Zhang, Lai and Wang (2007) to energy prices; and

Crowley and Schildt (2012) to output and consumption and
coincident indicators
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Methodology
Background

Wavelet analysis usually superior to spectral analysis due to global
and local stationarity problems

Still problems with wavelet analysis though:

i) still linearly generated;

ii) placement problem - dyadic ranges with DWT and variants

iii) overlap and spurious observations with CWT - frequency
resolution quite problematic with CWT

iv) usually only symmetric wavelet functions available "off the
shelf" with CWT

Advantage of EMD/HHT is that it is "A posteriori adaptive" and it is
applied only in the time domain
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Methodology
Background

Spectral Time-varying spectral DWT CWT HHT/EMD

Basis? A priori A priori A priori A priori A posteriori

Domain? Frequency Frequency through time Time-frequency Time-frequency Time

Stationary? Yes Yes within each window No No No

Linearly generated? Yes Yes Yes Yes No

Mathematical

underpinning?
Yes Yes Yes Yes No, empirical

Asymmetric

cycles?
No No Yes Yes Yes

Summary of frequency domain methods
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Methodology
Background

Key papers

1 Huang Shen Long et al (1998)
2 Huang and Shen (2005)
3 Wu and Huang (2008)

Norden Huang no longer at NASA - see
http://www.youtube.com/watch?v=YcV1B5ZzsvE

Recent conference at http://ldaa.fio.org.cn/Program.pdf

Recent advance has been the introduction of EEMD or Ensemble
EMD.

Also new journal (Adaptive Data Analysis)
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Methodology
2-step procedure

Approach: identify the intrinsic oscillatory modes by their characteristic
time scales in the data empirically, and then decompose the data
accordingly.

1 Do EMD to obtain intrinsic mode functions (IMFs); and
2 use the Hilbert spectrum or Direct quadrature method to obtain
estimate of instantaneous frequency for each IMF.

Step by step:

i) identify maxima and minima of x(t)
ii) generate upper and lower envelopes with cubic spline
interpolation emin(t) and emax(t).

iii) calculate mean of upper and lower envelopes:

m(t) = (emax(t) + emin(t))/2 (1)

- this process is shown in figure 1.
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Methodology

Figure: The spline-envelope process under EMD for a hypothetical series
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Methodology

iv) the mean is then subtracted from the series to yield a
difference variable, d(t):

d(t) = x(t)−m(t) (2)

v) if the stopping criterion (SC ):

T

∑
t=1

[dj (t)− dj+1(t)]2

d2j (t)
< SC (3)

is met, where dj (t) is the result from the jth iteration, then denote d(t)
as the ith IMF and replace x(t) with the residual

r(t) = x(t)− d(t) (4)
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Methodology

vi) if the stopping criterion it is not an IMF, replace x(t) with
d(t).

vii) repeat steps i) to v) until residual rn(t) has at most only one
local extremum or becomes a monotonic function from which
no more IMFs can be extracted.

The EMD process can also be illustrated by a diagrammatic flow
chart.The resultant decomposition of the series can be written as:

x(t) =
n

∑
j=1
cj (t) + rn(t) (5)

where cj (t) represents the jth IMF.
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Methodlogy

Figure: Flow chart of EMD sifting process
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Methodlogy

The Hilbert spectrum lends itself directly to the task of estimating
instantaneous frequency, thus allowing the researcher to account for all
types of frequency modulation. In mathematical terms, for any function
x(t) of Lp class, its Hilbert transform y(t) is:

y(t) =
1
π
P
∫ +∞

−∞

x(τ)
t − τ

dτ (6)

where P is the Cauchy principal value of the singular integral. The Hilbert
transform y(t) of any real-valued function x(t) will yield the analytic
function:

z(t) = x(t) + iy(t) = a(t) exp [iφ(t)] (7)

where i =
√
−1, a(t) represents the amplitude and φ(t) the phase

(φ(t) = arg(x(t))). a(t) is then given by

a(t) =
(
x2 + y2

)1/2
(8)
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Methodlogy

and:
φ(t) = tan−1

[y
x

]
(9)

Instantaneous frequency, ω, then is given by:

ω =
dφ

dt
(10)

EMD/HHT is fully adaptive in that it can detect "intra-wave"
modulations as well as "inter-wave" modulations
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Methodlogy
Problems

3 major problems:

1 End effects - extra data can be added to reduce this

2 Mode mixing - using an ensemble approach can mitigate this

3 Frequency resolution - Hilbert transform replaced by direct
quadrature method
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Illustrative examples
DJIA
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Figure: IMFs for DJIA
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Illustrative examples
DJIA
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Figure: Instantaneous frequencies for DJIA IMFs
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Illustrative examples
DJIA
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Figure: Significance test of DJIA IMFs against white noise
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Illustrative examples
DJIA
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Figure: Hilbert spectrum for DJIA IMFs
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Illustrative examples
DJIA
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Figure: Marginal Hilbert power spectrum for DJIA IMFs
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Illustrative examples
US industrial production
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Figure: IMFs for US industrial production
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Illustrative examples
US industrial production
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Figure: Instantaneous frequencies for IMFs from US industrial production
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Illustrative examples
US industrial production
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Figure: Significance test of US industrial production IMFs against white noise
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Illustrative examples
US industrial production
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Figure: Hilbert spectrum for IMFs of US industrial production
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Illustrative examples
US industrial production
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Figure: Marginal Hilbert power spectrum for IMFs of US industrial production
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Illustrative examples
UK M0
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Figure: IMFs for UK M0
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Illustrative examples
UK M0

1950 1960 1970 1980 1990 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
yc

le
/y

ea
r

IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Figure: Frequency of IMFs for UK M0
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Illustrative examples
UK M0
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Figure: IMF significance for UK M0 vs white noise
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Conclusions

EMD/HHT is a new FD technique that has not gained much traction
in economics or finance yet

Clearly advantages though in using a purely empirical method
particularly when "intra-wave" rather than "inter-wave" modulation is
evident

Problems with decision criteria for number of IMFs and also for
mode-mixing

New emerging technology that is readily available to economists - see
the links in paper
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