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Introduction

"The existence of a typical spectral shape suggests the
following law (stated in nonrigorous but familiar terms):
The long-term fluctuations in economic variables, if

decomposed into frequency components, are such that the
amplitudes of the components decrease smoothly with decreasing
period." (page 155)

Granger (1966)

Three implications from this:

1 There is a very long cycle in macroeconomic variables;
2 The business cycle does not stand out from other cycles in
macroeconomic variables when viewed in the frequency domain; and

3 The spectral analysis was the correct frequency domain technique to
assess this question.

In this paper we i) review the advances in frequency domain techniques and
ii) show that all the above are not so clear, and one is entirely incorrect.
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Introduction

Frequency domain rarely used in economics, and if it is used,
traditional spectral analysis usually method of choice;

Seminal article is Granger (1966) and this was updated by Levy and
Dezhbakhsh (2003);

Q: Why is freqency domain analysis important in empirical
macroeconomics?

A: Because growth and business cycles are central to understanding
how different components of growth interact and at what frequency.
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Overview and Data
Overview - HET

Cycles in growth studied by economists in early part of 20th century -
notably Kitchin (1923), Keynes (1936), Schumacher (1939), Mitchell
(1946), and Burns and Mitchell (1946).
Zarnowitz and Moore (1946) (p522) sums up Schumpter (1939),
namely:

i) the Kitchin (about 2 to 4 years), which were supposedly
related to inventory investment;

ii) the Juglar (about 7 to 10 years), which roughly correspond
to our current business cycle;

iii) the Kuznets (about 15 to 25 years), which purportedly relates
to changes in factor growth and infrastructure cycles; and

iv) the Kondratieff (about 48 to 60 years), which was originally
related to large swings in prices and perhaps technology (see
Kondratieff (1984)).

Schumpeter(1939) constructs a cyclical scheme 3 Kitchin’s per Juglar
and 6 Juglars per Kondratieff
More recently Korotayev and Tslirel (2010) claim using spectral
analysis that Juglar clearly evident in 200 years of data.
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Overview and Data
Overview

The first systematic frequency domain analysis of cycles in growth
data by Grainger and Hatanka (1964) with follow up by Adelman
(1965) and then the celebrated article by Granger (1966).

Figure: "Typical" spectral shape of an economic variable (taken from Granger
(1966))

"same basic shape is found regardless of the length of data available,
the size of the truncation point used in the estimation procedure, or
the trend removal method used"
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Overview and Data
Data

US real GNP (Balke and Gordon (1986)) 1886Q1-1946Q4 spliced
with (BEA), 1947Q1-2011Q2

3 formats

i) level data

ii) quarterly log change

iii) annual log change

i) was used by Granger (1966), ii) is typically used in most data
analysis (and in US media) while iii) is typically used by media
(particularly in the EU)
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Overview and data
Data - level data

1860 1880 1900 1920 1940 1960 1980 2000 2020
0

2000

4000

6000

8000

10000

12000

14000

Figure: US Real GNP
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Overview and data
Data - quarterly log change data
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Figure: Quarterly log change in US real GNP
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Overview and data
Data - annual log change data
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Figure: Annual Log Change in US Real GNP
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Spectral analysis
Fourier transform

...including economic variables!
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Spectral analysis
Fourier transform

Autocovariance function of a covariance stationary process x(t) is:

γ(τ) = E [(xt+τ − µ)(xt − µ)] (1)

where µ is the mean of the process. Spectrum of series x(t) is defined as
the Fourier transform of its autocovariance function:

fx (ω) =
1
2π

+∞∫
−∞

γ(τ)e−iτωdτ (2)

autocovariance function is the inverse Fourier transform of the spectrum.
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Spectral analysis
Fourier transform

That is:

γ(τ) =
1
2π

+∞∫
−∞

fx (ω)e−iτωdω (3)

which, after setting τ = 0 implies that γ(0) = σ2x =
+∞∫
−∞

fx (ω)dω. So

integral of spectrum is total unconditional variance so spectrum plotted at
each frequency, ω, represents the contribution of that frequency to the
total variance.
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Spectral analysis
Fourier transform

Patrick M. Crowley (TAMUCC) Bank of Finland October 2011 13 / 45



Spectral analysis
Fourier transform - Periodogram: US real GDP (levels)
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Figure: Periodogram for US real GNP (levels)
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Spectral analysis
Fourier transform - Periodogram: quarterly log change in US real GNP
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Spectral analysis
Fourier transform - Periodogram: annual log change in US real GNP
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Figure: Periodogram for annual log change in US real GDP
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Spectral analysis
Fourier transform

Level data shows Granger result

Quarterly change data shows strong 3 year, 8, 10, 20 and 40 year
cycles, but no very long cycle

Annual change data shows 7 year cycle, and a 10 year and a longer
30-40yr cycle, but no very long cycle

Q: Why the different results? A: Because of stationarity violation for level
results
Problem: periodogram allows leakage between frequencies
Solution: tapering, padding or smoothing - latter used here.
Welch method using Hanning window
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Spectral analysis
Smoothed Spectral Density - Welch Method

Figure: Welch Smoothing Method for US Real GNP

Patrick M. Crowley (TAMUCC) Bank of Finland October 2011 18 / 45



Spectral analysis
Smoothed Spectral Density - Welch Method

Figure: Welch Smoothing Method for LA US real GNP
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Spectral analysis
Problems

No clear peaks once we use smoothing
Q: Why the discrepancy between periodograms and smoothing?
A:

Spectral analysis assumes stationary, linearly generated process.

Also assumes no asymmetries in oscillations

Smoothing likely to emphasize local non-stationarities, even in
transformed data

One solution might be to split up time series and do spectral analysis on
small segments = time-varying spectral analysis
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Spectral analysis
Problems

Heisenberg uncertainty principle - cannot have resolution in frequency and
time domain at same time - one or the other!
Windows imposed on segments of the series with overlap
Still suffers from local non-stationarity problem with level data
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Spectral analysis
Time-Varying Analysis

"Great moderation" now shows through clearly: appears to be no
consistency in long cycle
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Figure: Time-varying spectral plot for LQUSNP
Patrick M. Crowley (TAMUCC) Bank of Finland October 2011 22 / 45



Spectral analysis
Time-Varying Analysis

Same here
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Figure: Time-Varying Spectral Plot for LAUSGNP
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Why wavelet analysis?

Here I adapt Hughes-Hallett and Richter (2006):
1 wavelet analysis doesn’t depend on any detrending techniques;

2 no stationarity or arbitrary selection of parameters required (such as
with the HP algorithm);

3 certain wavelet filters do not have an "end-point" problem in that
they can be shifted "circularly" around the series;

4 wavelet methods can either be "discrete" or "continuous", meaning
that they can be used to extract the component of a specific variable
operating within a frequency range, or they can be applied across all
frequencies ("continuous");

5 unlike conventional spectral analysis, wavelet analysis doesn’t assume
periodic functions, but rather different types of functions. Periodic
functions leads to loss of power in terms of the temporal and spectral
resolution of the output;

6 unlike conventional spectral analysis, wavelet analysis can use the
Heisenburg principle to obtain better resolution.
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Wavelet Analysis:
Where do wavelets come from?

France! Mathematician Ingrid Daubechies (1992) and signal processor
Stephane Mallat (1989) collaborated to create a new way of doing
time-frequency analysis:
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Wavelet Analysis:
Where do wavelets come from?
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Wavelet Analysis:
Where do wavelets come from?

Here for DWT I use a variant - MODWT which doesn’t convolve a
specific segment - instead moves wavelet function along data
observation by observation

Leads to redundancy but also means you get a series for a specific
frequency range

For CWT I use the Morlet and also use Maraun’s correction for
spurious points of significance - "area wide" significance

Basic approach is to convolve function with the data and extract set
of coeffi cients which tell you how similar to waveform data is. In
DWT this is known as a "crystal". In CWT this is displayed in terms
of a "heatmap"
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Wavelet Analysis:
Where do wavelets come from?
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Wavelet Analysis:
Where do wavelets come from?
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Frequency interpretation of crystals for Discrete WTs

Scale
crystals

Quarterly
frequency
resolution

d1 2-4Q
d2 4-8=1-2yrs
d3 8-16=2-4yrs
d4 16-32=4-8yrs
d5 32-64=8-16yrs
d6 etc

Table: Frequency interpretation of scale levels
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Wavelet Analysis
MODWT - US real GNP

Suggests that trend overpowers all other fluctuations
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Wavelet Analysis
MODWT - LQ US real GNP

Moderation clearly seen in post WW2 period and Great moderation clearly
evident in short term cycles
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Wavelet Analysis
MODWT - LQ US real GNP

Here shorter cycles dominate a variance decomposition
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Wavelet Analysis
MODWT - LA US real GNP

Even more apparent here
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Wavelet Analysis
MODWT - LA US real GNP

Here d3 (2-4yrs) dominates with d4 (4-8yrs) still significant
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Wavelet Analysis
CWT
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Wavelet Analysis
CWT - USGNP
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Wavelet Analysis
CWT - LQUSGNP
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Wavelet Analysis
CWT - LAUSGNP
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Wavelet Analysis
EMD

Huang, Shen, et al (1998) introduced a new method for decomposing
a series which works directly from the data using a sifting mechanism
called Empirical Mode Decomposition (EMD).

Now been developed and new variants available.

I will talk about this tomorrow in much more detail

Basic idea is that it attempts to exactly separate out frequencies,
originally using the Hilbert spectrum - most recent method uses a
direct quadrature method
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Wavelet Analysis
EMD - LNUSGNP
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Wavelet Analysis
EMD - LQUSGNP - IMFs
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Wavelet Analysis
EMD - LAUSGNP
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Conclusions
Macroeconomics

a) Many different cycles drive growth, not just the business
cycle - and this research suggests that the business cycle is
NOT a single cycle in the frequency domain

b) Granger’s law regarding the "typical" spectral shape is
redundant, as spectral analysis assumes global (and local)
stationarity, hence the law is an artifact of the methodology

c) Granger’s law suggesting an extremely long (Kondratieff)
cycle in economic growth is incorrect according to the US
dataset.of over 130 years of data

d) The "great moderation" is only evident in high frequency
cycles (see Crowley and Hughes Hallett (2011))

e) Level data does not capture all cycles (6 IMFs for level GNP
while 8 IMFs for transformed log GNP)
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Conclusions
FD methodology

i) spectral analysis not appropriate with level data as spectral
analysis assumes stationarity

ii) spectral windowed analysis (i.e. for smoothing or for
time-varying analysis) introduces spurious long cycles into
the results

iii) power law is important - it will automatically make lower
frequencies more powerful

iv) even when using non-stationary methodologies, results are
rarely identical and not always similar (e.g. wavelets and
EMD)
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