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Introduction

DWT and MODWT

Macro and financial economists are reasonably familiar with the use of the
Discrete Wavelet Transform (DWT) and the Maximal Overlap Discrete
Wavelet Transform (MODWT):

Ramsey and Lampart (1998a and 1998b), Ramsey (1999 and 2002)

Gençay, Selçuk and B. Withcher (2001a,b and 2005)

Wong, Ip, Xie and Lui (2003)

Lee (2004)

Connor and Rossiter (2005)

Crowley and Lee (2005)

Fernandez (2005)

Gallegati and Gallegati (2007)

. . .
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Introduction

CWT and XWT

More recently, tools associated with the continuous wavelet transform
(CWT) are becoming more widely used:

Jagrič and Ovin (2004)

Crowley, Mayes and Maraun (2006), Crowley and Mayes (2008)

Aguiar-Conraria et. al. (2008), Aguiar-Conraria and S (2011a,b)

Baubeau and Cazelles (2009)

Rua and Nunes (2009), Rua (2010)

I Some of these references use already cross-wavelet analysis to uncover

time-frequency interactions between two economic time series.

F Review paper by Crowley (2007)
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Introduction

Multivariate Wavelet Analysis

To be able to do multivariate wavelet analysis, concepts analogous to the
spectral multiple coherency and partial coherency are needed!

Main contribution of the paper

The development of the concepts of wavelet multiple coherency and
wavelet partial coherency.
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Introduction

Paper Objectives

The paper has five purposes:

1 to give a self-contained summary on the most relevant results on
continuous wavelet analysis

2 to introduce the concepts of wavelet multiple coherency and
wavelet partial coherency

3 to introduce the economist to a new family of wavelets (GMWs)

4 to describe how the transforms can be implemented in practice

5 to provide a user-friendly Matlab toolbox implementing the referred
wavelet tools
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Introduction

Outline of Presentation

1 Continuous wavelet analysis

2 Cross-wavelet analysis

3 Multivariate wavelet analysis

4 Examples
I Wavelet coherency

• Stock market comovements

I Wavelet partial coherency
• Constructed example
• Stock markets and oil prices
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Continuous wavelet analysis

Continuous Wavelet Transform

Definition

A function ψ ∈ L2(R) is a wavelet if it satisfies the following admissibility
condition

Cψ :=

∫ ∞
−∞

|ψ̂(ω)|2

|ω|2
dω <∞,

where ψ̂ is the Fourier transform of ψ.

Definition

Given a function x ∈ L2(R), its continuous wavelet transform (CWT)
with respect to the wavelet ψ is the function of two variables given by

Wψ;x(τ, s) = |s|−1/2
∫ ∞
−∞

x(t)ψ

(
t− τ
s

)
dt
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Continuous wavelet analysis

Wavelet Power and Wavelet Phase

ψ complex-valued

⇒ Wx(τ, s) complex-valued and can be written in
polar form:

Wx(τ, s) = |Wx(τ, s)| eiφx(τ,s), φx ∈ (−π, π]

I |Wx(τ, s)|2 → wavelet power

I φx(τ, s) → phase (angle)

ψ real-valued ⇒ imaginary part is constantly zero ⇒ no phase
information

To be able to separate the phase and amplitude information of a
time-series, we must use a complex wavelet (e.g. a Morlet wavelet).
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Cross-wavelet analysis

Cross-Wavelet Transform

To study the relationship between two time series x and y, we can use the
following generalizations of the basic wavelet tools: cross-wavelet
transform (and cross-wavelet power), complex wavelet coherency and
phase-difference.

Remark: To simplify the notation we will omit the argument (s, τ) in the formulas,

i.e. we will simply write Wxy for Wxy(s, τ), etc.

Definition

The cross-wavelet transform (XWT) of two time-series x and y is
defined as

Wxy = WxWy,

where Wx and Wy are the wavelet transforms of x and y, respectively.

The cross-wavelet power is the absolute value of the XWT.
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Cross-wavelet analysis

Complex Wavelet Coherency

Definition

Given two time-series x and y we define their complex wavelet
coherency %xy by:

%xy =
S (Wxy)[

S (|Wx|2)S (|Wy|2)
]1/2 ,

where S denotes a smoothing operator in both time and scale (e.g.
convolution with appropriate windows).

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 10 / 27



Cross-wavelet analysis

Wavelet Coherency and Phase-Difference

ψ complex-valued ⇒ %xy complex-valued and can be written in polar form:

%xy = |%xy| eiφxy , φxy ∈ (−π, π]

|%xy| → wavelet coherency denoted by Rxy

φxy → phase-difference (phase-lead of x over y)

? Phase-difference can be used to characterize the lead/lag relationship between
the two series.

? Phase-difference only meaningful when coherency is high.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 11 / 27



Cross-wavelet analysis

Wavelet Coherency and Phase-Difference

ψ complex-valued ⇒ %xy complex-valued and can be written in polar form:

%xy = |%xy| eiφxy , φxy ∈ (−π, π]

|%xy| → wavelet coherency denoted by Rxy

φxy → phase-difference (phase-lead of x over y)

? Phase-difference can be used to characterize the lead/lag relationship between
the two series.

? Phase-difference only meaningful when coherency is high.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 11 / 27



Cross-wavelet analysis

Wavelet Coherency and Phase-Difference

ψ complex-valued ⇒ %xy complex-valued and can be written in polar form:

%xy = |%xy| eiφxy , φxy ∈ (−π, π]

|%xy| → wavelet coherency denoted by Rxy

φxy → phase-difference (phase-lead of x over y)

? Phase-difference can be used to characterize the lead/lag relationship between
the two series.

? Phase-difference only meaningful when coherency is high.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 11 / 27



Cross-wavelet analysis

Wavelet Coherency and Phase-Difference

ψ complex-valued ⇒ %xy complex-valued and can be written in polar form:

%xy = |%xy| eiφxy , φxy ∈ (−π, π]

|%xy| → wavelet coherency denoted by Rxy

φxy → phase-difference (phase-lead of x over y)

? Phase-difference can be used to characterize the lead/lag relationship between
the two series.

? Phase-difference only meaningful when coherency is high.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 11 / 27



Cross-wavelet analysis

Wavelet Coherency and Phase-Difference

ψ complex-valued ⇒ %xy complex-valued and can be written in polar form:

%xy = |%xy| eiφxy , φxy ∈ (−π, π]

|%xy| → wavelet coherency denoted by Rxy

φxy → phase-difference (phase-lead of x over y)

? Phase-difference can be used to characterize the lead/lag relationship between
the two series.

? Phase-difference only meaningful when coherency is high.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 11 / 27



Multivariate wavelet analysis

Multivariate Wavelet Analysis

One series ↪→ continuous wavelet tools (CWT, phase)

Two series ↪→ cross wavelet wools (XWT, wavelet coherency,
phase-difference)

Several series
?
↪→ multiple wavelet tools (multiple and partial wavelet

coherency, partial phase-difference)

Idea

Formulas to compute wavelet multiple coherency and wavelet partial
coherency can be obtained by simply adapting formulas for multiple
correlation and partial correlation, respectively.

(Reference: Classical book by Kendall and Stuart, The Advanced Theory of

Statistics (1966)).
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Multivariate wavelet analysis

Notations

Let p time series x1,x2, . . . ,xp, be given.

Wij := Wxixj (cross wavelet transform of xi and xj)

Sij := S(Wij) (smoothed version of Wij)

S := (Sij)p×p (matrix of all Sij)
Remark: Matrix S depends on the specific value (τ, s) at which the

smoothed cross wavelet transforms Sij are being computed.

S d
ij := cofactor of element in position (i, j) of matrix S . For

completeness, S d := detS .

q := {2, . . . , p}

qj := {2, . . . , p} \ {j}, (2 ≤ j ≤ p)
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smoothed cross wavelet transforms Sij are being computed.

S d
ij := cofactor of element in position (i, j) of matrix S . For

completeness, S d := detS .

q := {2, . . . , p}

qj := {2, . . . , p} \ {j}, (2 ≤ j ≤ p)
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Multivariate wavelet analysis

Multiple and Complex Partial Wavelet Coherencies

Definition

The multiple wavelet coherency between the series x1 and all the other
series x2, . . . ,xp will be denoted by R1 (q) and is given by

R1 (q) =

√
1− S d

S11 S d
11

Definition

The complex partial wavelet coherency of x1 and xj , 2 ≤ j ≤ p,
(controlling for all the other series) will be denoted by %1 j.qj

and is given
by

%1 j.qj
= −

S d
j1√

S d
11 S d

jj

.
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Multivariate wavelet analysis

Partial Wavelet Coherency and Partial Phase-Difference

We can write the complex partial wavelet coherency %1 j.qj in polar form:

%1 j.qj =
∣∣%1 j.qj

∣∣ ei φ1 j.qj

We then introduce the following definitions:

Definition

The absolute value of the complex partial wavelet coherency is called the
partial wavelet coherency and is denoted be r1 j.qj .

Definition

The angle φ1 j.qj of the complex partial wavelet coherency is called the
partial phase-difference of x1 and xj , given all the other series.
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Multivariate wavelet analysis

Formulas in Terms of Complex Coherencies: Example

Multiple and partial wavelet coherencies can also be given in terms of
simple complex wavelet coherencies (i.e. complex coherencies between
pairs of series).

For example, in the case where we just have three series x1, x2 and x3,
the multiple wavelet coherency and the complex partial wavelet coherency
are given by the following “more familiar” formulas:

R2
1(2 3) =

R2
12 +R2

13 − 2< (%12 %23 %13)

1−R2
23

%1 2.3 =
%12 − %13%23√(

1−R2
13

) (
1−R2

23

)
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Examples Wavelet coherency

Comovement of Stock Returns

The analysis of the comovement of stock returns is a key issue in finance
and has drawn some attention in the literature:

King, Sentana and Wadhwani (1992)

Forbes and Rigobon (2002)

Brooks and Del Negro (2004)

Rua and Nunes (2009), Rua (2010) ↪→ analyse the comovement in the

time-frequency space, by resorting to wavelet analysis.
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Examples Wavelet coherency

Stock Markets: Who is the Leader?

We collected monthly data on the following indexes:

FTSE All-Share (United Kingdom) – FTSE

S&P 500 (United States) – S&P

DAX (Germany) – DAX

and computed the wavelet coherency and the phase-difference between:

1 S&P and FTSE

2 S&P and DAX

3 FTSE and DAX.

Here, we only show the results for S&P/FTSE and for S&P/ DAX.
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Examples Wavelet coherency

Wavelet Coherencies
Left: S&P (US) and FTSE (UK); Right: S&P (US) and DAX (Germany)

New York shows more regions of high coherency with the London stock market

than with Frankfurt. This is particularly evident when one focus on the decades of

1980 and 1990 at the higher frequency band (1∼4 years) ↪→ in line with the

conclusions of Rua and Nunes (2009).

The pictures suggest that the UK and the US stock markets became more

synchronized in 1985, synchronization that was extended to Germany only in the

decade of 1990.

Remark: Coherency between FTSE/DAX is very similar to the one for S&P/DAX.
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Examples Wavelet coherency

Wavelet Phase-Differences
Left: S&P (US) and FTSE (UK); Right: S&P (US) and DAX (Germany)

An interesting conclusion (not present in Rua and Nunes (2009)) arises when one looks at

the phase-differences.

In the shorter run frequencies, the phase-differences are always very close to zero

⇒ Cannot identify leader.

But, when one looks at 4 ∼ 8 years period frequencies, phase-differences are

consistently above zero (∗) ⇒ US stock market leads the other stock markets!

(∗) In fact, until early 1990s, phase-difference between S&P and DAX is negative; but this

is a period of low coherency ⇒ phase-difference not meaningful.
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Examples Partial wavelet coherency

Constructed Example

Consider three time series that share two common cycles, with some leads
and delays:

xt = sin
(
2π
3 t
)
+ 3 sin

(
2π
6 t
)
+ εx,t

yt = 4 sin
(
2π
3 (t+ 5

12 )
)
+ 3 sin

(
2π
6 (t− 10

12 )
)
+ εy,t,

zt = 3 cos
(
2π
6 t
) t=0, 1

12 ,
2
12 ,...,50.

Series xt and yt share 3-year and 6-year cycles; while yt leads xt in the
shorter period cycle, the opposite happens in the longer period cycle

The third variable, zt, shares the 6-year cycle both with xt and yt.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 21 / 27



Examples Partial wavelet coherency

Constructed Example

Consider three time series that share two common cycles, with some leads
and delays:

xt = sin
(
2π
3 t
)
+ 3 sin

(
2π
6 t
)
+ εx,t

yt = 4 sin
(
2π
3 (t+ 5

12 )
)
+ 3 sin

(
2π
6 (t− 10

12 )
)
+ εy,t,

zt = 3 cos
(
2π
6 t
) t=0, 1

12 ,
2
12 ,...,50.

Series xt and yt share 3-year and 6-year cycles; while yt leads xt in the
shorter period cycle, the opposite happens in the longer period cycle

The third variable, zt, shares the 6-year cycle both with xt and yt.

soares + aguiar-conraria (NIPE - UM) CWT: A Primer Helsinki, October 2011 21 / 27



Examples Partial wavelet coherency

Wavelet Coherency vs Partial Wavelet Coherency

Left: Wavelet coherency and phase-difference ↪→ capture both the 3-year cycle
and 6-year cycle relations

Right: Partial wavelet coherency and partial phase-difference, after controlling for
zt ↪→ capture only the 3-year cycle relation.
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Examples Partial wavelet coherency

Stock Markets and Oil Prices

The macroeconomic impact of oil price shocks is the subject of
innumerous papers and modeling its effects is not trivial (e.g.
Aguiar-Conraria and Wen 2007 and Kilian 2009).

Sadorsky (1999) and Ciner (2001), for example, found that increases in oil
prices had, in general, negative impacts on stock market returns.

In a different direction were the conclusions of Huang, Masulis and Stoll
(1996): they concluded that linkages between oil shocks and the financial
markets were, at best, weak.

Kilian (2009) and Kilian and Park (2009) concluded that “not all price
shocks are alike”:

I if oil price increases are the results of oil supply shocks (or expectation
that there will be a supply shortage), then their impact on the stock
market is negative;

I however, an increase in global aggregate demand will result in both
higher real oil prices and higher stock prices.
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Examples Partial wavelet coherency

Stock Markets and Oil Prices

We used higher order wavelet tools to briefly study the linkages between
oil prices and stock market returns.

Data
We gathered monthly data, running from July 1954 to December 2010, on
several variables:

S&P-500 Stock Returns (S&P)

Oil Prices (Oil),

Industrial Production (IP)

CPI inflation (π)

Effective Federal Funds Real Rate (r)
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Examples Partial wavelet coherency

Wavelet Coherency and Phase-Difference
(S&P and Oil)

Regions of high coherency are very scarce (phase-difference is not
meaningful in these situations)

?
=⇒ no relevant linkages between oil prices and the stock market.
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Examples Partial wavelet coherency

Partial Wavelet Coherency and Partial Phase-Difference
(S&P and Oil, controlling for the other variables)

Regions of high coherency between the mid-1970s and mid-1980s along the 3 ∼ 8
years period frequency band and again, at lower frequencies, after the early 1990s.

In the 1970s and early 1980s, partial phase-difference is between π/2 and π ⇒
anti-phase relation, with Oil leading. This suggests that the oil price increases
precede stock market downturns ↪→ compatible with results of Kilian and Park
(2009), since in the 1970s and early 1980s the oil crises were on the supply side.
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Examples Partial wavelet coherency

Partial Wavelet Coherency and Partial Phase-Difference
(S&P and Oil, controlling for the other variables)

In the 1990s and 2000s regions of high coherency are at lower frequencies and the
phase-difference is consistently between 0 and π/2 ⇒ the series are now in phase,
with the stock market leading ↪→ reinforces the demand side hypothesis. An
increase in economic activity will be reflected in the stock market and an oil
demand increase will lead to oil price increases ↪→ support the conclusions of
Kilian (2009), Kilian and Park (2009) and Baumeister and Peersman (2008).
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