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Abstract

We present recent developments in the computational tools for an-

alyzing identification in DSGE models. A growing interest is be-

ing addressed to identification issues in economic modeling (Canova

and Sala, 2009; Komunjer and Ng, 2009; Iskrev, 2010). The aims

of the present paper are two-fold. First, we present a new method

for computing derivatives with respect to the deep parameters in lin-

earized DSGE models. The availability of such derivatives provides

substantial benefits for the quantitative analysis of such models, and,

in particular, for the study of identification and the estimation of

the model parameters. Closed form expressions for computing ana-

lytical derivatives with respect to the vector of deep parameters are

presented in (Iskrev, 2010). This method makes an extensive use of

sparse Kronecker-product matrices which are computationally ineffi-

cient, require a large amount of memory allocation, and are therefore
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unsuitable for large-scale models. Our approach in this paper is to

compute the derivatives with respect to each parameter separately.

This leads to a system of generalized Sylvester equations, which can be

solved efficiently and accurately using existing numerical algorithms.

We show that this method leads to a dramatic increase in the speed

of computations at virtually no cost in terms of accuracy.

The second objective is to present the ongoing development of the

identification toolbox within the DYNARE framework. Such a tool-

box includes the identification tests recently proposed by Iskrev and

aims at integrating them with global sensitivity analysis methodolo-

gies (Ratto, 2008), to get useful insight about global identification

properties.

Keywords: DSGE models, local identification, estimation, global

identification, sensitivity analysis.

1 DSGE Models

This section provides a brief discussion of the class of linearized DSGE models

and the restrictions they imply on the first and second order moments of the

observed variables.

1.1 Structural model and reduced form

A DSGE model is summarized by a system g of m non-linear equations:

Et

(

g(ẑt, ẑt+1, ẑt−1,ut|θ)
)

= 0 (1)
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where ẑt is am−dimensional vector of endogenous variables, ut an n-dimensional

random vector of structural shocks with Eut = 0, E utu
′
t = In and θ a

k−dimensional vector of deep parameters. Here, θ is a point in Θ ⊂ R
k and

the parameter space Θ is defined as the set of all theoretically admissible

values of θ.

Currently, most studies involving either simulation or estimation of DSGE

models use linear approximations of the original models. That is, the model

is first expressed in terms of stationary variables, and then linearized around

the steady-state values of these variables. Let ẑt be a m−dimensional vector

of the stationary variables, and ẑ∗ be the steady state value of ẑt, such that

g(ẑ∗, ẑ∗, ẑ∗, 0|θ) = 0. Once linearized, most DSGE models can be written in

the following form

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)ut (2)

where zt = ẑt − ẑ∗. The elements of the matrices Γ0, Γ1, Γ2 and Γ3 are

functions of θ.

There are several algorithms for solving linear rational expectations mod-

els (see for instance Blanchard and Kahn (1980), Anderson and Moore (1985),

King and Watson (1998), Klein (2000), Christiano (2002), Sims (2002)).1 De-

pending on the value of θ, there may exist zero, one, or many stable solutions.

1Although these algorithms use different representations of the linearized model and of
the solution, it is not difficult to convert one representation into another. See the appendix
in Anderson (2008) for some examples.
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Assuming that a unique solution exists, it can be cast in the following form

zt = A(θ)zt−1 + B(θ)ut (3)

where the m×m matrix A and the m× n matrix B are functions of θ.

For a given value of θ, the matrices A, Ω := BB′, and ẑ∗ completely

characterize the equilibrium dynamics and steady state properties of all en-

dogenous variables in the linearized model. Typically, some elements of these

matrices are constant, i.e. independent of θ. For instance, if the steady state

of some variables is zero, the corresponding elements of ẑ∗ will be zero as

well. Furthermore, if there are exogenous autoregressive (AR) shocks in the

model, the matrix A will have rows composed of zeros and the AR coeffi-

cients. As a practical matter, it is useful to separate the solution parameters

that depend on θ from those that do not. We will use τ to denote the vector

collecting the non-constant elements of ẑ∗ , A, and Ω, i.e. τ := [τ ′
z, τ ′

A, τ ′
Ω]′,

where τz, τA, and τΩ denote the elements of ẑ∗, vec(A) and vech(Ω) that

depend on θ.2.

In most applications the model in (3) cannot be taken to the data directly

since some of the variables in zt are not observed. Instead, the solution of

the DSGE model is expressed in a state space form, with transition equation

2The number of constants in the solution matrices may also depend on the solution
algorithm one uses. For instance, to write the model in the form used by Sims (2002)
procedure, one may have to include in zt redundant state variables; this will increase the
size of the solution matrices and the number of zeros in them. Removing the redundant
states and excluding the constant elements from τ is not necessary, but has practical
advantages in terms of speed and numerical accuracy of the calculations
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given by (3), and a measurement equation

xt = Czt + Dut + νt (4)

where xt is a l-dimensional vector of observed variables and νt is a l-dimensional

random vector with E νt = 0, Eνtν
′
t = Q, where Q is l× l symmetric semi-

positive definite matrix 3.

In the absence of a structural model it would, in general, be impossible to

fully recover the properties of zt from observing only xt. Having the model

in (2) makes this possible by imposing restrictions, through (3) and (4),

on the joint probability distribution of the observables. The model-implied

restrictions on the first and second order moments of the xt are discussed

next.

1.2 Theoretical first and second moments

From (3)-(4) it follows that the unconditional first and second moments of

xt are given by

E xt := µx = s (5)

cov(xt+i,x
′
t) := Σx(i) =











CΣz(0)C ′ if i = 0

CAiΣz(0)C ′ if i > 0
(6)

3In the DYNARE framework, the state-space and measurement equations are always
formulated such that D = 0
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where Σz(0) := E ztz
′
t solves the matrix equation

Σz(0) = AΣz(0)A′ + Ω (7)

Denote the observed data with XT := [x′
1, . . . ,x

′
T ]′, and let ΣT be its co-

variance matrix, i.e.

ΣT := E XT X ′
T

=



















Σx(0), Σx(1)′, . . . , Σx(T − 1)′

Σx(1), Σx(0), . . . , Σx(T − 2)′

. . . . . . . . . . . .

Σx(T − 1), Σx(T − 2), . . . , Σx(0)



















(8)

Let σT be a vector collecting the unique elements of ΣT , i.e.

σT := [vech(Σx(0))′, vec(Σx(1))′, ..., vec(Σx(T − 1))′]′

Furthermore, let mT := [µ′,σ
′

T ]′ be a (T − 1)l2 + l(l + 3)/2-dimensional

vector collecting the parameters that determine the first two moments of the

data. Assuming that the linearized DSGE model is determined everywhere

in Θ, i.e. τ is unique for each admissible value of θ, it follows that mT

is a function of θ. If either ut is Gaussian, or there are no distributional

assumptions about the structural shocks, the model-implied restrictions on

mT contain all information that can be used for the estimation of θ. The

identifiability of θ depends on whether that information is sufficient or not.

This is the subject of the next section.
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2 Identification

This section explains the role of the Jacobian matrix of the mapping from

θ to mT for identification, as discussed in Iskrev (2010), and shows how it

can be computed analytically, in a more efficient way with respect to Iskrev

(2010).

2.1 The rank condition

The probability density function of the data contains all available sample in-

formation about the value of the parameter vector of interest θ. Thus, a basic

prerequisite for making inference about θ is that distinct values of θ imply

distinct values of the density function. This is known as the identification

condition.

Definition 1. Let θ ∈ Θ ⊂ R
k be the parameter vector of interest, and

suppose that inference about θ is made on the basis of T observations of a

random vector x with a known joint probability density function f(X; θ),

where X = [x1, . . . ,xT ]. A point θ0 ∈ Θ is said to be globally identified if

f(X; θ̃) = f(X; θ0) with probability 1 ⇒ θ̃ = θ0 (9)

for any θ̃ ∈ Θ. If (9) is true only for values θ̃ in an open neighborhood of

θ0, then θ0 is said to be locally identified.

In most applications the distribution of X is unknown or assumed to be

Gaussian. Thus, the estimation of θ is usually based on the first two moments

of the data. If the data is not normally distributed, higher-order moments
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may provide additional information about θ, not contained in the first two

moments. Therefore, identification based on the mean and the variance of

X is only sufficient but not necessary for identification with the complete

distribution. Using the notation introduced in the previous section, we have

the following result (see, e.g., Hsiao (1983) and the references therein)

Theorem 1. Suppose that the data XT is generated by the model (3)-(4)

with parameter vector θ0. Then θ0 is globally identified if

mT (θ̃) = mT (θ0) ⇔ θ̃ = θ0 (10)

for any θ̃ ∈ Θ. If (10) is true only for values θ̃ in an open neighborhood

of θ0, the identification of θ0 is local. If the structural shocks are normally

distributed, then the condition in (10) is also necessary for identification.

The condition in (10) requires that the mapping from the population

moments of the sample - mT (θ), to θ is unique. If this is not the case, there

exist different values of θ that result in the same value of the population

moments, and the true value of θ cannot be determined even with an infinite

number of observations. In general, there are no known global conditions

for unique solutions of systems of non-linear equations, and it is therefore

difficult to establish the global identifiability of θ. Local identification, on

the other hand, can be verified with the help of the following condition

Theorem 2. Suppose that mT is a continuously differentiable function of θ.

Then θ0 is locally identifiable if the Jacobian matrix J(q) :=
∂mq

∂θ′
has a full

column rank at θ0 for q ≤ T . This condition is both necessary and sufficient

when q = T if ut is normally distributed.
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This result follows from the implicit function theorem, and can be found,

among others, in Fisher (1966) and Rothenberg (1971).4 Note that, even

though J(T ) having full rank is not necessary for local identification in the

sense of Definition 1, it is necessary for identification from the first and

second order moments. Therefore, when the rank of J(T ) is less than k, θ0

is said to be unidentifiable from a model that utilizes only the mean and the

variance of XT . A necessary condition for identification in that sense is that

the number of deep parameters does not exceed the dimension of mT , i.e.

k ≤ (T − 1)l2 + l(l + 3)/2.

The local identifiability of a point θ0 can be established by verifying

that the Jacobian matrix J(T ) has full column rank when evaluated at θ0.

Local identification at one point in Θ, however, does not guarantee that the

model is locally identified everywhere in the parameter space. There may be

some points where the model is locally identified, and others where it is not.

Moreover, local identifiability everywhere in Θ is necessary but not sufficient

to ensure global identification. Nevertheless, it is important to know if a

model is locally identified or not for the following two reasons. First, local

identification makes possible the consistent estimation of θ, and is sufficient

for the estimator to have the usual asymptotic properties (see Florens et al.

(2008)). Second, and perhaps more important in the context of DSGE models

is that with the help of the Jacobian matrix we can detect problems that are

4Both Fisher (1966) and Rothenberg (1971) makes the additional assumption that θ0

is a regular point of J(T ), which means that if it belongs to an open neighborhood where
the rank of the matrix does not change. Without this assumption the rank condition in
Theorem 2 is only sufficient for local identification under normality. Although it is possible
to construct examples where regularity does not hold (see Shapiro and Browne (1983)),
typically the set of irregular points is of measure zero (see Bekker and Pollock (1986)).
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a common cause for identification failures in these models. If, for instance,

a deep parameter θj does not affect the solution of the model, it will be

unidentifiable since its value is irrelevant for the statistical properties of the

data generated by the model, and the first and second moments in particular.

Consequently, ∂mT

∂θj
- the column of J(T ) corresponding to θj , will be a vector

of zeros for any T , and the rank condition for identification will fail. Another

type of identification failure occurs when two or more parameters enter in

the solution in a manner which makes them indistinguishable, e.g. as a

product or a ratio. As a result it will be impossible to identify the parameters

separately, and some of the columns of the Jacobian matrix will be linearly

dependent. An example of the first problem is the unidentifiability of the

Taylor rule coefficients in a simple New Keynesian model pointed out in

Cochrane (2007). An example of the second is the equivalence between the

intertemporal and multisectoral investment adjustment cost parameters in

Kim (2003). In these papers the problems are discovered by solving the

models explicitly in terms of the deep parameters. That approach, however,

is not feasible for larger models, which can only be solved numerically. As

will be shown next, the Jacobian matrix in Theorem 2 is straightforward to

compute analytically for linearized models of any size or complexity.

2.2 Computing the Jacobian matrix

The simplest method for computing the Jacobian matrix of the mapping from

θ to mT is by numerical differentiation. The problem with this approach is

that numerical derivatives tend to be inaccurate for highly non-linear func-
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tions. In the present context this may lead to wrong conclusions concerning

the rank of the Jacobian matrix and the identifiability of the parameters in

the model. For this reason, Iskrev (2010) applied analytical derivatives, em-

ploying implicit derivation. As shown in Iskrev (2010), it helps to consider

the mapping from θ to mT as comprising two steps: (1) a transformation

from θ to τ ; (2) a transformation from τ to mT . Thus, the Jacobian matrix

can be expressed as

J(T ) =
∂mT

∂τ ′

∂τ

∂θ′
(11)

The derivation of the first term on the right-hand side is straightforward since

the function mapping τ into mT is available explicitly (see the definition of

τ and equations (5)-(7)); thus the Jacobian matrix J1(T ) := ∂mT

∂τ ′
may be

obtained by direct differentiation.

The elements of the second term J2(T ) := ∂τ

∂θ′
, the Jacobian of the trans-

formation from θ to τ , can be divided into three groups corresponding to the

three blocks of τ : τz, τA and τΩ. In Iskrev (2010) it is assumed that ẑ∗ is a

known function of θ, implied by the steady state of the model, so that the

derivative of τz can be computed by direct differentiation. This is in general

not true, since one can implement a non-linear DGSE model in packages like

DYNARE, which provide the steady state computation and linearization even

when the former is not available explicitly. Here we provide the extension to

this case, by first noting that the ‘static’ model g∗ = g(ẑ∗, ẑ∗, ẑ∗, 0|θ) = 0

provides and implicit function between ẑ∗ and θ. Therefore, ∂ẑ∗

∂θ′
can be

computed exploiting the analytic derivatives of g∗ with respect to ẑ∗ and θ,
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provided by the symbolic pre-processor of DYNARE:

∂ẑ∗

∂θ′
= −

( ∂g∗

∂ẑ∗′

)−1

·
∂g∗

∂θ′
(12)

and finally ∂τz

∂θ′
is obtained by removing the zeros corresponding to the con-

stant elements of ẑ∗.

In order to properly compute the derivatives of τA and τΩ, the structural

form (2) has to be re-written explicitly accounting for the dependency to ẑ∗:

Γ0(θ, ẑ
∗)zt = Γ1(θ, ẑ

∗) Et zt+1 + Γ2(θ, ẑ
∗)zt−1 + Γ3(θ, ẑ

∗)ut (13)

Also in this case, one can take advantage of the DYNARE symbolic pre-

processor. The latter provides derivatives ∂Γi(θ,ẑ∗)
∂θ′

consistent with the form

(13). However, since the dependence of ẑ∗ to θ is not known explicitly to

the preprocessor, these derivatives miss the contribution of the steady state.

Therefore, one has to exploit the computation of the Hessian, provided by

DYNARE for the second order approximation of non-linear DSGE models.

The Hessian gives the missing derivatives ∂Γi(θ,ẑ∗)

∂ẑ∗
′ , allowing one to perform

the correct derivation as:

∂Γi(θ)

∂θ′
=
∂Γi(θ, ẑ

∗(θ))

∂θ′
=
∂Γi(θ, ẑ

∗)

∂θ′
+
∂Γi(θ, ẑ

∗)

∂ẑ∗′
·
∂ẑ∗

∂θ′
(14)

The derivatives of τA and τΩ can be obtained from the derivatives of

vec(A) and vech(Ω), by removing the zeros corresponding to the constant

elements of A and Ω. In Iskrev (2010) the derivative of vec(A) is computed

using the implicit function theorem. An implicit function of θ and vec(A) is
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provided by the restrictions the structural model (2) imposes on the reduced

form (3). In particular, from (3) we have Et zt+1 = Azt, and substituting in

(2) yields

(Γ0 − Γ1A)zt = Γ2zt−1 + Γ3ut (15)

Combining the last equation with equation (3) gives to the following matrix

equation

F (θ, vec(A)) :=
(

Γ0(θ) − Γ1(θ)A
)

A − Γ2(θ) = O (16)

Vectorizing (16) and applying the implicit function theorem gives

∂vec(A)

∂θ′
= −

(

∂vec(F )

∂vec(A)′

)−1
∂vec(F )

∂θ′
(17)

Closed-form expressions for computing the derivatives in (17) are provided

in Iskrev (2010). Such a derivation requires the use of Kronecker products,

implying a dramatic growth in memory allocation requirements and in com-

putational time as the size of the model increases. The typical size of matrices

to be handled in Iskrev (2010) is of m2 ×m2, which grows very rapidly with

m. Here we propose an alternative method to compute derivatives, allowing

to reduce both memory requirements and the computational time. Taking

the derivative of (16) with respect to each θj , for j = 1, . . . , k, one gets a set

of k equations in the unknowns ∂A

∂θj
of the form:

M(θ)
∂A

∂θj
+ N(θ)

∂A

∂θj
P (θ) = Qj(θ) (18)
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where

M(θ) =
(

Γ0(θ) − Γ1(θ)A(θ)
)

N(θ) = −Γ1(θ)

P (θ) = A(θ)

Qj(θ) =
∂Γ2

∂θj
−

(∂Γ0

∂θj
−
∂Γ1

∂θj
A(θ)

)

A(θ)

Equation (18) is a generalized Sylvester equation and can be solved using

available algebraic solvers. For example, in DYNARE, this kind of equation is

solved applying a QZ factorization for generalized eigenvalues of the matrices

M(θ) and N(θ) and solving recursively the factorized problem. It is also

interesting to note that the problems to be solved for different θj only differ in

the right-hand side Qj(θ), allowing to perform the QZ factorization only once

for all parameters in θ. In practice we replace here the single big algebraic

problem of dimension m2 ×m2 of Iskrev (2010) with a set of k problems of

dimension m×m.

Using Ω = BB′, the differential of Ω is given by

dΩ = dBB′ + B dB′ (19)

Having dΩ in terms of dB is convenient since it shows how to obtain the

derivative of Ω from that of B. Note that from equations (15) and (3) we

have

(

Γ0 − Γ1A
)

B = Γ3 (20)
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and therefore

dB =
(

Γ0 − Γ1A
)−1(

dΓ3 − (dΓ0 − dΓ1A − Γ1 dA)
)

(21)

Thus, once ∂vec(A)
∂θ′

is available, it is straightforward to compute, first

∂vec(B)
∂θ′

and ∂vech(Ω)
∂θ′

, and then ∂τA

∂θ′
and ∂τΩ

∂θ′
.

2.2.1 Extension to second order derivatives

Computing second order derivatives of the model with respect to structural

parameters can be performed recursively, starting from knowing second order

derivatives of Γi:

∂2Γi(θ)

∂θj∂θl
=
∂2Γi(θ, ẑ

∗(θ))

∂θj∂θl
=
∂2Γi(θ, ẑ

∗)

∂θj∂θl

+
( ∂

∂ẑ∗′

(∂Γi(θ, ẑ
∗)

∂ẑ∗′

)′

·
∂ẑ∗

∂θj

)′

·
∂ẑ∗

∂θl
+
∂Γi(θ, ẑ

∗)

∂ẑ∗′
·
∂2ẑ∗

∂θj∂θl
(22)

where ∂2Γi(θ,ẑ∗)
∂θj∂θl

can be given by the DYNARE symbolic preprocessor and

∂
∂ẑ∗

′

(

∂Γi(θ,ẑ∗)

∂ẑ∗
′

)′

can be obtained from DYNARE third order approximation of

non-linear DSGE models. Moreover, in order to compute ∂2ẑ∗

∂θj∂θl
, we need the

implicit second order derivative from the implicit function g∗ = g(ẑ∗, ẑ∗, ẑ∗, 0|θ) =

0:

∂2ẑ∗

∂θj∂θl
= −

( ∂g∗

∂ẑ∗′

)−1

·
( ∂2g∗

∂θj∂θl
+ γ∗

)

(23)

where each element γ∗h, h = 1, . . . , m, of the vector γ∗ is given by:

γ∗h =
( ∂

∂ẑ∗′

( ∂g∗h
∂ẑ∗′

)′

·
∂ẑ∗

∂θj

)′

·
∂ẑ∗

∂θl
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and both second order derivatives of g∗ with respect to θ and ẑ∗ are needed

from the DYNARE preprocessor.

Having obtained the second order derivatives of Γi, we can take the second

order derivatives of (16) with respect to θj and θl, for j, l = 1, . . . , k, getting

a set of k2 equations in the unknowns ∂2
A

∂θl∂θj
again of the form of a generalized

Sylvester equation:

M(θ)
∂2A

∂θl∂θj

+ N(θ)
∂2A

∂θl∂θj

P (θ) = Ql,j(θ) (24)

where

Ql,j(θ) =
∂Qj

∂θl

−
(∂M(θ)

∂θl

∂A

∂θj
+
∂N(θ)

∂θl

∂A

∂θj
P (θ) + N(θ)

∂A

∂θj

∂P (θ)

∂θl

)

(25)

and

∂M(θ)

∂θl
=

(∂Γ0(θ)

∂θl
−
∂Γ1(θ)

∂θl
A(θ) − Γ1(θ)

∂A(θ)

∂θl

)

∂N(θ)

∂θl

= −
∂Γ1(θ)

∂θl

∂P (θ)

∂θl
=
∂A(θ)

∂θl

∂Qj(θ)

∂θl
=

∂2Γ2

∂θl∂θj
−

( ∂2Γ0

∂θl∂θj
−

∂2Γ1

∂θl∂θj
A(θ)

)

A(θ)

−
(∂Γ0

∂θj

−
∂Γ1

∂θj

A(θ)
)∂A(θ)

∂θl

+
∂Γ1

∂θj

∂A(θ)

∂θl
A(θ)

The problem (24) can be solved exactly in the same way as for first order
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derivatives, still keeping the same QZ decomposition for matrices M and N

for all j, l = 1, . . . , k and only changing the right hand side term Ql,j.

3 Computing derivatives: DYNARE imple-

mentation

We first summarize here the results and performance of the DYNARE im-

plementation of the computation of first derivatives of DSGE models. The

performed two types of checks: (i) consistency between the two analytical

approaches and the numerical one (by perturbation); (ii) gain in computa-

tional time of the Sylvester equation solution with respect to the approach in

Iskrev (2010). We considered a set of models of different size and complex-

ity: Kim (2003), An and Schorfheide (2007), Levine et al. (2008), Smets and

Wouters (2007), QUEST III (Ratto et al., 2009, 2010). The models of An

and Schorfheide (2007) and Smets and Wouters (2007) are linearized DSGE

models, and as such their DYNARE implementation already contains ex-

plicitly the steady state dependence on θ, thus not requiring the generalized

form discussed in (14). On the other hand, the models of Kim (2003), Levine

et al. (2008) and QUEST III (Ratto et al., 2009, 2010) are fed to DYNARE

in their full original non-linear form, thus allowing to test all elements of the

proposed computational procedure.

The consistency of all different methods for computing derivatives is ful-

filled in all models: in particular the maximum absolute difference between

numerical derivatives and analytic ones was in the range (10−6−10−9) across
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model Computing time (s) model size (m)
Sylvester Iskrev (2010)

Kim (2003) 0.0062 0.0447 4
An and Schorfheide (2007) 0.0075 0.054 5

Levine et al. (2008) 0.016 0.109 13
Smets and Wouters (2007) 0.183 5.9 40

Ratto et al. (2009) 1.6 907.6 107
Ratto et al. (2010) 11.1 ∞ 210

Table 1: Computational time required for the evaluation of first order ana-
lytic derivatives of models of growing size.

the different models, while the two analytic approaches are practically iden-

tical, in terms of numerical accuracy (maximum absolute difference in the

range (10−11 − 10−14)). Concerning computational time, the gain of the

approach proposed in this paper is evident looking at Table 1. The compu-

tational cost for the Iskrev (2010) approach becomes unsustainable for Ratto

et al. (2009) and Ratto et al. (2010). Also note that we performed the tests

with a 64-bit version of MATLAB, on a powerful HP ProLiant machine with

4 dual core processors (8 processors as a whole). This has a significant ef-

fect on the speed of the algorithm based on Kronecker products, linked to

the multi-thread architecture of recent versions of MATLAB. Using only one

single dual core processor for Smets and Wouters (2007), the computational

cost doubles (11.24 s), while for Ratto et al. (2009) the computation of all

derivatives lasted 47.5 minutes!

The present results show that, with the algorithms proposed in this paper,

the evaluation of analytic is affordable also for DSGE models of medium/large

scale, enabling to perform detailed identification analysis for such kind of

models. This is discussed in the next Section.
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4 Analyzing local identification of DSGE mod-

els: DYNARE implementation

We have discussed in Section 2 the main Theorem 2 for local identification

of DSGE models as demonstrated by Iskrev (2010). We need to recall here

another necessary condition discussed in Iskrev (2010):

Corollary 1. The point θ0 is locally identifiable only if the rank of J2 = ∂τ

∂θ′

at θ0 is equal to k.

The condition is necessary because the distribution of XT depends on θ

only through τ , irrespectively of the distribution of ut. It is not sufficient

since, unless all state variables are observed, τ may be unidentifiable.

4.1 Identification analysis procedure

The procedure is based on Monte Carlo exploration of the space Θ of model

parameters. In particular, a sample from Θ is made of many randomly drawn

points from Θ′, where Θ ∈ Θ′ discarding values of θ that do not imply a

unique solution. The set Θ′ contains all values of θ that are theoretically

plausible, and may be constructed by specifying a lower and an upper bound

for each element of θ. Such bounds are usually easy to come by from the

economic meaning of the parameters. After specifying a distribution for θ

with support on Θ′, one can obtain points from Θ by drawing from Θ′

and removing draws for which the model is either indetermined or does not

have a solution. Conditions for existence and uniqueness are automatically

checked by most computer algorithms for solving linear rational expectations
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models, including of course DYNARE. The identifiability of each draw θj is

then established using the necessary and sufficient conditions discussed by

Iskrev (2010):

• Finding that matrix J2 is rank deficient at θj implies that this particular

point in Θ is unidentifiable in the model.

• Finding that J2 has full rank but J(T ) does not, means that θj cannot

be identified given the set of observed variables and the number of

observations.

• On the other hand,if θ is identified at all, it would typically suffice to

check the rank condition for a small number of moments, since J(q)

is likely to have full rank for q much smaller than T . According to

Theorem 2 this is sufficient for identification; moreover, the smaller

matrix may be much easier to evaluate than the Jacobian matrix for

all available moments. A good candidate to try first is the smallest q

for which the order condition is satisfied, and then increase the number

of moments if the rank condition fails;

• the DYNARE implementation showed here also analyzes the derivatives

of the LRE form of the model (JΓ = ∂Γi

∂θ′
), to check for ‘trivial’ non-

identification problem, like two parameters always entering as a product

in Γi matrices.
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4.2 Weak identification analysis

The previous conditions are related to whether of not columns of J(T ) or J2

are linearly dependent. Another typical avenue in DSGE models is weak iden-

tification. This can be tracked by checking conditions like ∂τ

∂θj
≈

∑

i6=j αi
∂τ

∂θi

or ∂mT

∂θj
≈

∑

i6=j αi
∂mT

∂θi
, i.e. by checking multi-collinearity conditions among

columns of J(T ) or J2. In multi collinearity analysis, scaling issues in the

Jacobian can matter significantly in interpreting results. In medium-large

scale DSGE models there can be as many as thousands entries in J(q) and

J2 matrices (as well as in corresponding mq and τ matrices). Each row of

J(q) and J2 correspond to a specific moment or τ element and there can

be differences by orders of magnitude between the values in different rows.

In this case, the multi-collinearity analysis would be dominated by the few

rows with large elements, while it would be unaffected by all remaining ele-

ments. This can imply loss of ‘resolution’ in multi-collinearity indices, that

can result to be too squeezed towards unity. Hence, while exact collinearity

among columns would be invariant to the scaling of rows, an improper row

scaling can make difficult to distinguish between weak and non-identification.

Iskrev (2010) used the elasticities, so that the (j, i) element of the Jacobian

is
∂mj

∂θi

θi

mj
. This give the percentage change in the moment for 1% change in

the parameter value. Here we re-scale each row of J(q) and J2 by its largest

element in absolute value. In other words, assuming J2 made of the two rows:







0.1 −0.5 2.5

−900 500 200






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multi-collinearity analysis will be performed on the scaled matrix:







0.04 −0.2 1

−1 0.5556 0.2222







The effect of this scaling is that the order of magnitude of derivatives of

any moment (or any τ element) is the same. In other words, this grossly

corresponds to an assumption that the model is equally informative about

moments, thus implying equal weights across different rows of the Jacobian

matrix.

4.3 DYNARE procedure

A new syntax is available in the β version of DYNARE. The simple key-

word identification(<options>=<values>); triggers a Monte Carlo ex-

ploration described here, based on prior definitions and a list of observed

variables entered by the user, using standard DYNARE syntax for setting-

up an estimation. Current options are as follows:

• prior_mc = <integer> sets the number of Monte Carlo draws (default

= 2000);

• load_ident_files = 0, triggers a new analysis generating a new sam-

ple from the prior space, while load_ident_files = 1, loads and dis-

plays a previously performed analysis (default = 0);

• ar = <integer> (default = 3), triggers the value for q in computing

J(q);
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• useautocorr: this option triggers J(q) in the form of auto-covariances

and cross-covariances (useautocorr = 0), or in the form of auto-correlations

and cross-correlations (useautocorr = 1). The latter form normalizes

all mq entries in [−1, 1] which may be useful for comparability of deriva-

tives of different elements of J(q) (default = 0).

5 Examples

5.1 Kim (2003)

This paper demonstrated a functional equivalence between two types of ad-

justment cost specifications, coexisting in macroeconomic models with invest-

ment: intertemporal adjustment costs which involve a nonlinear substitution

between capital and investment in capital accumulation, and multisectoral

costs which are captured by a nonlinear transformation between consumption

and investment. We reproduce results of Kim (2003), worked out analyti-

cally, applying the DYNARE procedure on the non-linear form of the model.

The representative agent maximizes

∞
∑

t=0

βt logCt (26)

subject to a national income identity and a capital accumulation equation:

(1 − s)
( Ct

1 − s

)1+θ

+ s
(It
s

)1+θ

= (AtK
α
t )1+θ (27)

Kt+1 =

[

δ

(

It
δ

)1−φ

+ (1 − δ)K1−φ
t

]
1

1−φ

(28)
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where s = βδα
∆

, ∆ = 1 − β + βδ, φ(≥ 0) is the inverse of the elasticity

of substitution between It and Kt and θ(≥ 0) is the inverse of the elastic-

ity of transformation between consumption and investment. Parameter φ

represents the size of intertemporal adjustment costs while θ is called the

multisectoral adjustment cost parameter. Kim shows that in the linearized

form of the model, the two adjustment cost parameter only enter through an

‘overall’ adjustment cost parameter Φ = φ+θ
1+θ

, thus implying that they cannot

be identified separately.

Here we assume that the Kim model is not analytically worked out to

highlight this problem of identification. Instead, the analyst feeds the non-

linear model (constraints and Euler equation) to DYNARE (also note that

the adjustment costs are defined in such a way that the steady state is not

affected by them). The identification analysis first tells that the condition

number of the J(q) and J2 matrices is in the range (1012, 1016) across the

entire Monte Carlo sample. Some numerical rounding errors in the computa-

tion of the analytic derivatives discussed in Section 2.2 imply that the rank

condition test may or may not pass according to the tolerance for singularity.

A much more severe check is performed analysing the multicorrelation coeffi-

cient across the columns of J(q) and J2. Absolute values of such correlation

coefficients differ from 1 only by a tiny 10−15 across the entire Monte Carlo

sample (namely the correlation is negative: -1), thus perfectly revealing the

identification problem demonstrated analytically by Kim. We also checked

that this result is invariant to row re-scaling, confirming the validity of our

approach to better distinguish between weak identification and rank defi-

ciency. This result shows that the procedure by Iskrev (2010) implemented
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in DYNARE can help the analyst in detecting identification problems in all

typical cases where such problems cannot easily worked out analytically. Per-

fect collinearity is detected both for J2 and J(q), implying that sufficient and

necessary conditions for local identification are not fulfilled by this model.

It seems also interesting to show here the effect of the number of states

fed to DYNARE on the results of the identification analysis. For simplicity

of coding, Lagrange multipliers may be explicitly included in the model equa-

tions. In this case, one would have an additional equation for the Lagrange

multiplier λt = (1−s)θ

(1+θ)C
(1+θ)
t

, with λt entering the Euler equation. Under this

kind of DYNARE implementation, and still assuming that only Ct and It

can be observed, the multicollinearity test for J(q) still provides correlation

values which are virtually -1 for any q, thus confirming the identification

problem. On the other hand, due to the specific effect of θ on λt, our iden-

tification tests would tell that θ and φ are separably identified in the model,

provided that all states are observed. This exemplifies the nature of the

necessary condition stated in Corollary 1.

In Figure 1 we show typical plots produced by DYNARE for multi-

collinearity tests. In the MC analysis performed, for each parameter value

sampled from the prior distribution, a multi-collinearity measure is com-

puted. This provides a MC sample of multi-collinearity measures for each

parameter. Such samples are plotted in DYNARE in the form of box and

whiskers plots. Boxplots are made of (i) a central box that indicates the

width of the central quartiles of the empirical distribution in the MC sample

(i.e. the width from the 25% to 75% quantiles); (ii) a red line indicating

the median of the empirical distribution; (iii) whiskers are lines that indi-
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cate the ‘tail’ of the distribution, and extend up to a maximum width of

1.5 times the width of the central [25%, 75%] box; (iv) MC points falling

outside the maximum whiskers width, are taken as ‘outliers’ and plotted as

circles. Such ‘outliers’ indicate a small subset of values of multi-collinearity

coefficients that are very different form the bulk of the MC sample. In the

box and whiskers plots of Figure 1 we can see that, when λt is included

in the model, the sample of multi-collinearity coefficients of J2 for φ and

θ is centered around a value 0.98, near but not equal to one, and a num-

ber of ‘outliers’ with small correlation is detected. This kind of plot reflects

the necessary nature of Corollary 1 and usually indicate some possible weak

identification problems. The bottom graph, showing the box and whiskers

plots of J(q), clearly shows the collinearity problems of φ and θ, given that

λt is not observed.

5.2 An and Schorfheide (2007)

The model An and Schorfheide (2007), linearized in log-deviations from

steady state, reads:

yt = Et[yt+1] + gt − Et[gt+1] − 1/τ · (Rt −Et[πt+1] − Et[zt+1]) (29)

πt = βEt[πt+1] + κ(yt − gt) (30)

Rt = ρRRt−1 + (1 − ρR)ψ1πt + (1 − ρR)ψ2(∆yt − zt) + εR,t (31)

gt = ρggt−1 + εg,t (32)

zt = ρzzt−1 + εz,t (33)
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where yt is GDP in efficiency units, πt is inflation rate, Rt is interest rate,

gt is government consumption and zt is change in technology. The model is

completed with three observation equations for quarterly GDP growth rate

(Y GRt), annualized quarterly inflation rates (INFt) and annualized nominal

interest rates (INTt):

Y GRt = γQ + 100 ∗ (yt − yt−1 + zt) (34)

INFLt = πA + 400πt (35)

INTt = πA + rA + 4γQ + 400Rt (36)

where β = 1
1+rA/400

.

The rank condition tests for rank deficiencies in J(q) and J2 are passed

by the list model parameters. In Figure 2 we show the box and whiskers

plots for multicollinearity for this model: the model parameters on the x-

axes are ranked in decreasing order of weakness of identification, i.e. the

parameters at the left are those most likely to be weakly identified. Multi-

collinearity in the model does not signal any problem. On the other hand, the

plot for moments indicate that weak identification problems may occur for

specially for ψ1 and ψ2. The check pairwise correlations is also performed, as

shown in Figure 3. There is no extremely large pairwise correlation pattern,

however it is interesting to note the links between ψ1, ψ2 and ρR. Moreover,

auto-correlations of exogenous shocks are linked to the corresponding shock

standard deviation. This is a quite typical outcome, since the variance of an

autocorrelated shock depends on its persistence through the relation σ2/(1−

ρ2), which affects the moments magnitude.
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5.3 Smets and Wouters (2007)

All parameters estimated in Smets and Wouters (2007) pass the rank con-

ditions of Iskrev (2010) (Figure 4). Multi-collinearity analysis (Figure 5)

and pairwise correlation analysis (Figures 6-8) suggest possible weak iden-

tification issues for moments, while in the model no problem is highlighted.

Parameters in the left part of Figure 5 are most likely to be weakly identi-

fied. Constraining them to, e.g., their prior mean is most likely to affect only

slightly estimation results, due to the possibility of the model parameteriza-

tion to compensate this constraint by opportunely adjusting other parameters

collinear to them. This can be the case for crpi (rπ the weight of inflation

in the Taylor rule) and cry (ry: the weight of output in the Taylor rule).

These two parameters are also quite significantly correlated (Figure 8). Also

interesting is to notice in Figure 7 correlations between csigl (σl) and cprobw

(ξw: Calvo parameter for wages) and between csigma (σc: inverse of elas-

ticity of substitution) and chabb (λ: habit persistence). The latter couple,

however, does not seem to be specially affected by weak identification prob-

lems. Finally, similar correlation patterns as in An and Schorfheide (2007)

for parameters in exogenous shocks can be seen in Figure 6,

5.4 QUEST III (Ratto et al., 2009)

All parameters estimated in QUEST III (Ratto et al., 2009) pass the rank

conditions of Iskrev (2010) (Figure 9). Multi-collinearity analysis (Figure

10) and pairwise correlation analysis (Figure 11) suggest possible weak iden-

tification issues. Parameters in the left part of Figure 10 are most likely
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to be weakly identified. For example, this happens for WRLAGE (real

wage rigidity) or GAMWE (nominal wage rigidity). These two parameters

have large multi-collinearity also for J2 (top graph in Figure 10), mean-

ing that even with available information for all states, weak identification

would be present there. A significant pairwise correlation is also detected for

(WRLAGE, GAMWE), both in J(q) and J2, explaining the weak identifi-

cation result. Similarly to Kim (2003), model linearization seems to mitigate

separable effects of those two parameters. Finally, the usual strong pairwise

correlations between the standard deviation of exogenous shocks and their

persistence were detected.

5.5 QUEST III (Ratto et al., 2010)

All parameters estimated in QUEST III (Ratto et al., 2010) pass the rank

conditions of Iskrev (2010) (Figure 12). Multi-collinearity analysis (Figure

13-14) gives very similar results as Ratto et al. (2009) concerning weak iden-

tification issues.

6 Conclusions

We proposed a new approach for computing analytic derivatives of linearized

DSGE models. This method proved to dramatically improve the speed of

computation with respect to Iskrev (2010), virtually without any loss in ac-

curacy. Furthermore, we implemented in DYNARE the local identification

procedure proposed by Iskrev (2010) and tested it on a number of estimated

DSGE model in the literature. In general, all DSGE models pass the nec-
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essary and sufficient condition for local identification. The most interest-

ing aspect to be analyzed in detail is therefore weak identification. Mul-

ticollinearity coefficients seem a useful measure for weak identification and

pairwise correlation analysis can highlight pairs of parameters which act in

a very similar way. One thing about the multicollinearity analysis is that

sometimes it may be misleading about weak identification. This is because if

the moments are very sensitive to a parameter, this may partially offset the

strong multicollinearity. Basically the weak identification is an interaction of

the two things: the sensitivity and the multicollinearity. The parameter σC

in Smets and Wouters (2007) is a good example of that: it is overall better

identified than its multicollinearity would suggest because the derivative of

the moments with respect to σC is large (relative to the value of σC). We no-

ticed that the multi-collinearity analysis for this parameter is very sensitive

to scaling of the Jacobian: not applying any scaling, our analysis would flag

σC as one of the most prone to weak identification, while with the scaling ap-

plied here or in Iskrev (2010) this is not the case. So, with the analysis based

on the Jacobian it can be difficult to measure the overall result about weak

identification. Another caveat is that the model in not equally informative

about all moments, so they may have to be weighted differently.

In addition to these caveats, we can see a number of possible lines of

improvement of current procedure:

• improve the mapping of weak identification, highlighting regions in the

prior space where such problems are most sensible;

• deepen the analysis of multi-collinearity structure, to possibly high-
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light systematic patterns across the entire prior space: the existence of

such patterns may suggest ways to re-parameterize the model to make

identification stronger.

Finally, some procedure to inspect global identification features would be

of great importance. Research is in progress in this direction.

References

An, S. and F. Schorfheide (2007). Bayesian analysis of DSGE models. Econo-

metric Reviews 26 (2-4), 113–172. DOI:10.1080/07474930701220071.

Anderson, G. (2008, March). Solving linear rational expectations models: A

horse race. Computational Economics 31 (2), 95–113.

Anderson, G. and G. Moore (1985). A linear algebraic procedure for solving

linear perfect foresight models. Economics Letters 17 (3), 247–252. avail-

able at http://ideas.repec.org/a/eee/ecolet/v17y1985i3p247-252.html.

Bekker, P. A. and D. S. G. Pollock (1986, March). Identi-

fication of linear stochastic models with covariance restric-

tions. Journal of Econometrics 31 (2), 179–208. available at

http://ideas.repec.org/a/eee/econom/v31y1986i2p179-208.html.

Blanchard, O. J. and C. M. Kahn (1980, July). The solution of linear dif-

ference models under rational expectations. Econometrica 48 (5), 1305–

11. available at http://ideas.repec.org/a/ecm/emetrp/v48y1980i5p1305-

11.html.

31



Canova, F. and L. Sala (2009, May). Back to square one: identification issues

in DSGE models. Journal of Monetary Economics 56 (4).

Christiano, L. J. (2002). Solving dynamic equilibrium models by a method

of undetermined coefficients. Computational Economics 20 (1-2).

Cochrane, J. H. (2007, September). Identification with taylor rules: A crit-

ical review. NBER Working Papers 13410, National Bureau of Economic

Research, Inc.

Fisher, F. (1966). The identification problem in econometrics. McGraw-Hill.

Florens, J.-P., V. Marimoutou, and A. Péguin-Feissolle (2008). Econometric
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Figure 1: DYNARE Boxplots for identification analysis of the Kim model).
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Figure 2: DYNARE Boxplots for identification analysis of the An and
Schorfheide (2007) model.
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Figure 4: Distributions of condition numbers of J2, J(q), JΓ for the Smets
and Wouters (2007) model.
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Figure 9: Distributions of condition numbers of J2, J(q), JΓ for the QUEST
III (Ratto et al., 2009) model.
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Figure 11: DYNARE Boxplots for most relevant pairwise correlations in J(q)
columns (top graph) and J2 (bottom graph) for the QUEST III (Ratto et al.,
2009) model.
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Figure 12: Distributions of condition numbers of J2, J(q), JΓ for the QUEST
III (Ratto et al., 2010) model.
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Figure 14: DYNARE Boxplots for most relevant pairwise correlations in J(q)
columns (top graph) and J2 (bottom graph) for the QUEST III (Ratto et al.,
2010) model.
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