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Abstract

With sticky prices, optimizing agents and money in the utility function, I
derive the exact analytical solution for optimal monetary policy given a zero
lower bound (ZLB) on the interest rate. The Phillips curve is Neo-Classical, and
the ZLB is then not a constraint on optimal policy. Optimal policy is history
dependent even without a commitment problem and implements a Friedman
rule equilibrium. Policy rule parameters, like the response to in�ation, are not
identi�ed under optimal policy. The optimal policy rule intercept term is time
varying and depends on the variance of the natural real rate.
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1 Introduction and summary

I use a model with sticky prices, optimizing agents and money in the utility function
to derive the exact analytical solution for optimal monetary policy given a zero lower
bound on the nominal interest rate1. My model has a Neo-Classical Phillips curve,
unlike the literature that has emerged on this topic since Krugman (1998) revived
it2. I �nd that the main result on optimal policy when there is a zero lower bound is
robust to the speci�cation of the Phillips curve: optimal monetary policy is history
dependent. This applies even without any commitment problem.

Some agents set prices �exibly, while some agents set prices one period in ad-
vance. This creates a Neo-Classical Phillips curve and enables me to solve the model
analytically without imposing certainty equivalence, following Henderson and Kim
(2001). The model may be viewed as a microfounded and fully intertemporal version
of Krugman (1998). The consumption Euler equation drives the result that future
in�ation helps stabilize the economy when the natural real rate is negative: The real
rate can be lowered at the zero lower bound only through higher in�ation in later
periods. This is the same kind of history dependence in optimal policy as Eggerts-
son and Woodford (2003), Eggertsson and Woodford (2004) and Krugman (1998)
describe. This history dependence di¤ers from history dependence describing opti-
mal time-inconsistent policy in e.g. Woodford (2003b), in that monetary policy in
the zero lower bound-papers depends on a lagged exogenous variable - the natural
interest rate.

Eggertsson and Woodford (2003) solve their model numerically. The policymaker
in their model may postpone in�ation and work through lower expected real interest
rates further into the future in order to stimulate demand today, because of a New-
Keynesian Phillips curve. But the trigger for this policy is a low natural real rate
at some point. Since variation in expected in�ation is costly with a New-Keynesian
Phillips curve, there is a trade-o¤ and optimal policy is time-inconsistent. The Neo-
Classical Phillips curve in my model implies that the zero lower bound is not a
binding constraint on optimal monetary policy: When known variation in the rate
of in�ation is not a concern, the zero lower bound also ceases to be a concern. It is
�rst best optimal to implement the Friedman rule and leave the nominal interest rate

1The lower bound on nominal interest rates need not be exactly zero. Costly storage of money
would make a negative lower bound possible. Nonsatiation in real money balances would create
a positive lower bound. Like much of the literature, this paper refers to a zero lower bound for
simplicity.

2Adam and Billi (2006) and (2007), Billi (2005) and (2007), Wolman (1998), Wolman (2005),
Fuhrer and Madigan (1997), and Rotemberg and Woodford (1997) are some of the important con-
tributions to the literature on interest rate policy and the zero lower bound. A di¤erent strand of
the zero lower bound literature concerns alternative instruments for use when there is a zero lower
bound. Examples are Svensson (2001), Clouse, Henderson, Orphanides, Small, and Tinsley (2003),
Orphanides and Wieland (2000) and Curdia and Woodford (2009a). Yet another strand of the lit-
erature discusses a multiplicity problem related to the nonlinearity introduced by the zero lower
bound, e.g. Benhabib, Schmitt-Grohe, and Uribe (2001a) and Alstadheim and Henderson (2006).
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marginally above zero in equilibrium - and this �rst best solution is implementable.
I assume that the support of the shock to the natural real rate is bounded, so that
there always exists an in�ation rate high enough to equate the real interest rate to
the natural real rate, even with a zero lower bound on the nominal interest rate.

While con�rming the history-dependence-result, my model still illustrates how
the role of forward guidance in monetary policy in a model with fully rational and
forward-looking optimizing agents may be limited: Monetary policy has no leverage
over the real interest rate beyond the next period, because of the Neo-Classical Phillips
curve. Hence, even if agents are forward-looking, the policymaker does not have the
option to postpone expansionary policy beyond the next period. On the other hand,
the policymaker here is quite happy to in�ate in the next period, because expected
in�ation is not costly.

The price level is a random walk and the in�ation rate is stationary under optimal
policy. While monetary policy establishes a nominal anchor in the sense that the
initial price level is determined by including in�ation in the monetary policy reaction
function, it does not follow in my model that monetary authorities should aim to
stabilize in�ation in equilibrium. If authorities suboptimally should choose to stabilize
the in�ation rate, the zero lower bound would become a constraint, as in the model
with a New-Keynesian Phillips Curve.

I show that the identi�cation challenge highlighted in Cochrane (2007) also ap-
plies with a Neo-Classical Phillips curve. Under optimal policy, the parameter that
ensures determinacy by responding strongly enough to in�ation is not identi�ed. A
suboptimal reaction function is required in order to identify the parameter securing
determinacy. Cochrane showed this in a �exible price setup as well as in a setup with
a New-Keynesian Phillips curve. Also, the optimal policy rule responds directly to
shocks, as in Woodford (2001), and cannot be implemented via policy response to
endogenous variables alone. Hence, the intercept term in the optimal policy rule has
to be time-varying. In my model it also depends on the distribution of the shock to
the natural real rate, since I do not impose certainty equivalence.

The next section describes the model. In section 3, I solve the �exible-price version
of the model and derive an optimal interest-rate rule in that case. Next, in section
4, I solve the sticky-price version of the model. Section 5 presents an interest-rate
rule that implements the �rst best solution in the case with preset prices. Section 6
provides concluding remarks.

2 The model

The model follows Aoki (2001) in that it both has a log-linear aggregate price index
and one sector with sticky prices and one sector with �exible prices. The economy is
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closed. Agents in the sector with sticky prices set prices one period in advance. This
price setting means that the model can be solved exactly using the method of unde-
termined coe¢ cients, as in Henderson and Kim (2001). Agents are yeoman farmers,
there is no use of capital in production, and no government consumption. Agents
derive utility from real money balances. Money is superneutral in the �exible-price
version of the model in the sense that in�ation does not a¤ect output. In the sticky-
price version of the model, money is not super-neutral, in the sense that expected
in�ation in the next period a¤ects output today. Money does not pay interest in this
model, and hence a zero nominal interest rate would eliminate distortions to money
holdings3.

A representative agent maximizes the following objective with respect to con-
sumption c; her output price p and money m and bonds b, subject to a period budget
constraint, where �t is the langrange multiplier on the constraint:

Max En

( 1X
t=n

�t�n(
c1��t � 1
1� �

)� 1
2
�ty

2
t + f(

mt

Pt
) + �t[(1 + !)ptyt +mt�1+ (1)

(1 + it�1)b
g
t�1 + bt�1 � tt � Ptct �mt � bgt � �t;t+1bt]

	
where

ct =
cs;tc

1�
f;t

(1� )1�
; (2)

cs;t � [
Z 1

j=0

(cjs;t)
��1
� dj]

�
��1 ; cf;t � [

Z 1

i=0

(cif;t)
��1
� di]

�
��1 ; (3)

and

f(
mt

Pt
) =

�
�1
2
�(� � mt

Pt
)2, m

P
� �

0; m
P
> �

: (4)

j indexes producers of di¤erent period t �sticky-price� (s) goods cjs;t. cs;t is the
composite sticky-price good. i indexes the ��exible-price�(f) goods (cif;t) while cf;t
is the composite �exible-price good. ct is the composite consumption good for period
t that goes into each agent�s period utility function. The term �1

2
�ty

2
t represents

disutility from producing output in period t: � is an i.i.d. negative supply shock

3The distortion following a high and variable nominal rate in my model may be viewed as a
proxy for the cost of high average in�ation and a preference for interest rate smooting. In practise,
many central banks pay interest on money. That is, the policy relevant part of base money, central
bank reserves, pay interest. Interest payments on central bank reserves is modelled in e.g. Curdia
and Woodford (2009b). When central banks pay interest on reserves, the Friedman rule does not
apply. An adjusted version of the Friedman rule would apply to the di¤erence between the short
term market rate and the central bank deposit rate. This adjusted Friedman rule would say that
if the central bank costlessly could provide more reserves (e.g. by holding claims that covered the
costs of paying interest on reserves), the short term market rate should be brought down to the �oor
established by the central bank deposit rate. That would relieve the banks of the cost of managing
their reserves - today�s "shoe-leather costs". This is an argument for a "�oor-system" rather than
"corridor-system" for liquidity management.
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common to both sectors4, with a mean equal to one. It will determine the natural
real rate of the model. The last term in the period utility function represents utility
from holding real money balances. Pt is the price of ct in terms of mt. The inverse of
� in equation (4) is proportional to the interest elasticity of money demand.

Each agent maximizes utility subject to the constraint that income from produc-
tion after taxes or subsidies, (1+!)ptyt; plus �nancial assets and their return brought
over from last period (money mt�1 , bonds bt�1 and (1 + it�1)b

g
t�1) must equal taxes

tt, consumption expenditure Ptct and new holdings of �nancial assets. b
g
t is the nom-

inal value of risk free government bonds, while bt is a vector of quantities of state
contingent claims, and �t;t+1 is the vector of the prices of those claims. Each state
contingent claim pays one unit of currency in the subsequent period given a particular
realization of the state in that period. The gross risk free nominal interest rate, 1+ it
(I will also use It for this variable) is therefore equal to [�t;t+1�1]�1; where 1 is a vector
of ones.

2.1 The intratemporal problem and goods market equilib-
rium

This subsection presents the goods market equilibrium. Some more details are pro-
vided in appendix A on page 19.

I ignore time subscripts here. I assume that there are complete markets and per-
fect risk sharing5. All consumers consume the same amount c = C of the aggregate
consumption index, and also the same amounts of the indexes of sticky-price con-
sumption and �exible-price consumption, cs = Cs and cf = Cf . The total demand
from consumers i that faces producer j in the sticky-price sector is6

ys =

Z 2

i=0

(cjs)di =

Z 2

i=0

[(
pjs
Ps
)��cs]di = (

pjs
Ps
)��2Cs = (

pjs
Ps
)��2(

Ps
P
)�1C; (5)

where 2Cs �
R 2
i=0

csdi. I have used that Cs = (Ps
P
)�1C where Ps is the sticky-

price goods price index. The corresponding expression applies for the demand for
�exible-price goods, but with (1� ) instead of  :

yf =

Z 2

i=0

(cjf )di =

Z 2

i=0

[(
pjf
Pf
)��cf ]di = (

pjf
Pf
)��2Cf = (

pjf
Pf
)��2(

Pf
P
)�1(1� )C: (6)

4In a yeoman farmer model, the labor market is internalized. � may be interpreted as a labor
supply shock or a productivity shock. In particular, following Obstfeld and Rogo¤ (1996), the
productivity variable � may be understood as follows: Let disutility from work e¤ort l be given by
-�l and the production function be Al�; � < 1: Inverting the production function gives l = ( yA )

1=�:

Given � = 1
2 and � =

2�
A1=� ; we get ��( yA )

1=� = � 1
2�y

2:
5Agents learn which sector they will belong to in the next period at the point in time when the

sticky-price agents need to set their preset price. They buy state contingent claims before they learn
which sector they belong to.

6Note that the total mass of agents is two, there is a mass one of sticky price producers and a
mass one of �exible price producers, and all are also consumers.
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Symmetry across producers within the same sector implies that they all will set
the same price and produce the same amount. (5) and (6) together with goods market
equilibrium imply that (using capital Y for aggregate output)

Ys = 2Cs = (
Ps
P
)�12C (7)

and

Yf = 2Cf = (
Pf
P
)�1(1� )2C: (8)

From Y � (Ys)(Yf )
1�

(1�)1� and P = P 
s P

1�
f ;

Y = 2C: (9)

2.2 The intertemporal problem

I use the expression for demand for each individual producers good (5) and (6) and
the fact that all consumers will consume the same (since there is perfect risk sharing).
I let small letters denote individual variables. I ignore the i; j indexing of individuals
since agents in the same sector set the same price. Substituting into the objective
function (1) gives the following version of the problem of a representative agent in
the sticky-price (s) sector:

Max En

( 1X
t=n

�t�n
�
(
c1��t � 1
1� �

)� 1
2
�t[(

ps;t
Ps;t

)��2(
Ps;t
Pt
)�1Ct]

2 + f(
mt

Pt
) (10)

+�t[(1 + !)[(
ps;t
Ps;t

)��2(
Ps;t
Pt
)�1Ct] +mt�1 +

(1 + i)t�1b
g
t�1 + bt�1 � tt � Ptct �mt � bgt � �t;t+1bt]

		
:

Agents maximize the objective with respect to the consumption index ct, bonds b
g
t

and bt, money mt and the price ps;t of their output. ps;t denotes a price set in period
t� 1 (s for sticky) that applies in period t: The objective of an agent in the �exible-
price sector is equal to the one above, except that pf;t replaces ps;t. pf;t is a price set
in period t that also applies in period t. The following additional constraints must
apply in order for the problem to be well de�ned: ct > 0; mt > 0, pt > 0 ; 8 t, and
� > 1: Pr(") denotes the probability of state ": Di¤erentiating with respect to the
composite consumption good and assets gives

�t =
1

Ptc
�
t

; (consumption) (11)

�t = Et f�(1 + it)(�t+1)g ; (risk free bonds) (12)

��t+1 = �t
�t;t+1(")

Pr(")
; (state-dependent bonds) (13)
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and
f 0(

mt

Pt
) = Et f�tPt � ��t+1Ptg : (money) (14)

Di¤erentiating with respect to the price that will apply one period ahead gives

Et

�
�t+1�(

ps;t+1
Ps;t+1

)�2�(
Ps;t+1
Pt+1

)�2C2t+12
22

1

ps;t+1

�
(15)

= �Et
�
�t+1(1 + s)(

Ps;t+1
Pt+1

)�12Ct+1[1� �](
ps;t+1
Ps;t+1

)��
�
:

Simplifying (15), lagging one period and substituting for the expression for ys;t in
terms of relative prices gives

ps;t =
�
��1

(1 + !)

Et�1f�tys2t g
Et�1fyst�tg

: (sticky price) (16)

This is the marginal rate of substitution between the disutility from production and
the utility from consumption, adjusted for market power (decreasing as � increases)
and subsidies s. In the �exible-price case I get the following equation instead of (16):

pf;t =
�
��1
1 + !

�tyf
�t

: (�exible price) (17)

Using (11) and (12) I get

c��t = Etf
�(1 + it)

Pt+1=Pt
c��t+1g: (Euler equation) (18)

Agents are also subject to a no-Ponzi-game condition,

Et

�
lim
s!1

mt+s + bt+s
Pt+s

�j=sj=t(1 + ij)
�1 � 0

�
: (No-Ponzi-game condition) (19)

The model can be solved for output and in�ation independently of real money
balances. But money is relevant for welfare evaluation. For future reference (11),
(14) and (18) give money demand characterized by7

1

�

it
1 + it

(c��t ) =

�
� � mt

Pt
for m

P
� �

0 for m
P
> �

: (20)

Condition (20) translates into a constraint on the equilibrium nominal interest rate8:

it
1 + it

� 0; (21)

7The interest elasticity of money demand is dmP
d i
1+i

i
1+i
m
P
= � 1

�C
��

i
1+i
m
P

8If f 0(�) had been speci�ed to be negative for large enough M
P , the zero lower bound would apply

anyway in equilibrium. In that case, f 0() = 0 would have described the unique �rst best quantity
of money. In the present case, the �rst best M

P is not unique, but instead described by the open
interval from � and up. One could have speci�ed f 0() to reach some lower bound above zero. In
that case the lower bound on the interest rate would have been strictly positive. One way to get a
negative equilibrium nominal interest rate would be to introduce storage cost on money (e.g. tax
on money holdings). This would give money a character of being �perishable�, and perishable goods
can have negative nominal interest rates.
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since c > 0 and � > 09.

2.3 A summary of the equilibrium conditions

Let 1+! = �
��1 , so that the e¤ect of monopolistic competition on output is eliminated.

Using goods market equilibrium,

Yf = 2Cf ; Ys = 2Cs and Y =
(Ys)

(Yf )
1�

(1� )1�
= 2C;

and symmetry across producers so that ps;t = Ps;t and pf;t = Pf;t, I have the following
unknown variables: Ps;t; Pf;t; Pt; Yt; Ys;t; Yf;t; it; �t, while real money balances can be
determined recursively. The �rst order conditions in terms of aggregate variables are

Ps;t =
Et�1f�tY 2

s;tg
Et�1fYs;t�tg

; (sticky price) (22)

Pf;t =
�tYf;t
�t

; (�exible price) (23)

�t =
(1
2
Yt)

��

Pt
; (consumption) (24)

Pt = P 
s;tP

1�
f;t ; (price equation) (25)

(
1

2
Yt)

�� = Etf
�(1 + it)

Pt+1=Pt
(
1

2
Yt+1)

��g; (demand) (26)

Yf;t = (
Pf;t
Pt
)�1(1� )Yt; (�exible-price output) (27)

and

Ys;t = (
Ps;t
Pt
)�1Yt: (sticky-price output) (28)

I eliminate time subscripts (using +1 and �1 for leads and lags), eliminate �,
de�ne P

P�1
= � and divide the price equations by P�1. This gives me a system in

terms of the in�ation rate, including the following two equations:

Ps
P�1

=
E�1f�Y 2

s g
E�1fYs(12Y )����1g

(sticky price) (29)

and
Pf
P�1

=
�Yf
(1
2
Y )��

�: (�exible price) (30)

9Condition (21) could technically be satis�ed also if i < �1, but that would violate the Euler
equation.
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I substitute out for relative prices (29) and (30) in equations (25), (27) and (28), and
arrive at the following system of four equations:

� = [
�Yf
(1
2
Y )��

�]1�[
E�1(�Y

2
s )

E�1(Ys(
1
2
Y )����1)

]; (price equation) (31)

(
1

2
Y )�� = �(1 + i)E(��1+1f

1

2
Y+1g��); (demand) (32)

Yf = (
�Yf
(1
2
Y )��

)�1(1� )Y; (�ex-price output) (33)

and

Ys = [(
E�1f�Y 2

s g
E�1fYs(12Y )����1g

)�1�Y ]: (sticky-price output) (34)

Equations (31)-(34) may be used together with some speci�cation for monetary
policy to solve for �; Ys; Yf ; Y and 1 + i.

2.4 Monetary and �scal policy

I assume that authorities use the following interest rate rule:

1 + i = I���1����
���1
�1 ��� : (interest-rate rule) (35)

It is convenient to let authorities use a log-linear interest-rate rule. The model may
then be solved analytically with linear tools, while the zero lower bound constraint is
not violated as long as the support of the shock is bounded. While only considering
linear policy may seem like a restriction, it turns out not to be - the �rst best allocation
is attainable with this rule; both in the �exible price case and in the sticky price
case. My approach is to derive the �rst best allocation and then back out the policy
parameters that support that allocation.

The rule is Taylor-type, but without response to the output gap, and with a
time-variable intercept term, given by I���1�������1�1 . �� > 1 ensures determinacy.
Intuitively, response to � may stand in for a response to the output gap, keeping in
mind that � captures the marginal cost of production in this model. Alternatively,
note that the natural real interest rate - or theWicksellian rate of interest - is variable
according to �. Woodford (2001) describes how a simple interest rate rule may im-
plement optimal monetary policy as long as it includes a time-varying intercept term
equal to the natural real rate.

In addition to the general rule (35), I consider a simple in�ation-targeting rule,
with �� and ���1 both equal zero but �� is nonzero.

Utility maximization combined with the No-Ponzi-game condition (19), implies
the transversality condition, which is that (19) holds with equality in equilibrium. I
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assume throughout that (19) holds for all on or o¤ equilibrium paths of endogenous
variables - that is, �scal policy is Ricardian. When initial net public debt Mn +
Bn is positive it will be satis�ed with e.g. a balanced budget rule for �scal policy
and a nominal interest rate that is at least marginally positive with some positive
probability in some periods. In order to rule our explosive or implosive price level
paths respectively, one may want to add a condition that the government guarantees
a minimal real redemption value of money (as in Obstfeld and Rogo¤ (1983)) and a
condition that consolidated nominal government debt grows at a minimal rate should
the price level embark on an implosive path10.

3 The �exible-price model

I �rst solve the model given �exible prices in both sectors. Since I do not impose
certainty equivalence, the distribution of the shock matters. I want to work with a
bounded support and I choose a uniform distribution for simplicity. Flexible prices
in both sectors mean that the relative price is determined by the �xed parameter 11;

Ps
Pf
=

�


1� 

� 1
2

; (36)

and output in the two sectors are given by

Yf = ��1
�



1� 

�� 1
2
 �
1

2
Y

���
; Ys = ��1

�


1� 

� 1
2
(1�)�

1

2
Y

���
: (37)

Substituting the above into

Y � (Ys)
(Yf )

1�

(1� )1�

implies that
Y = K � ��

1
1+� ; (38)

K = ( 1
(1�)1� )

1
1+� (1

2
)�

�
1+� ;and

C =
1

2
Y =

1

2
K � ��

1
1+� : (39)

In the symmetric case12 where  = 1
2
I will have Ps

Pf
= 1, C = ��

1
1+� and Y = 2��

1
1+� .

10See e.g. section 4.2 in chapter 2 of Woodford (2003a))
11Use equations (22), (23), (27) and (28) to see this.
12Given a �xed and equal mass of agents in the sticky-price sector and the �exible-price sector, it

seems most natural to consider the symmetric case. If demand was skewed in the direction of one
sector, one would think that more producers would move to that sector. I will keep the  parameter
general in the solutions I derive, though. There might be other applications of the model where a
variable  could be interesting to consider. E.g. one might apply the model to a monetary union,
where one country had sticky prices and one country had �exible prices.
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As � ! 0, the agents are risk neutral (the coe¢ cient of relative risk aversion
is zero) and smoothing of consumption across di¤erent �-values is less important.
Hence output and consumption vary inversely with the supply shock. As � ! 1,
output and consumption are less responsive to �, since consumption smoothing is
more important. The special case of � = 1 is the case of log utility of consumption13.

With output given by equation (39), the unknown variables are the in�ation rate
and the nominal interest rate. The demand equation and the interest-rate rule now
give me a system of two equations in two unknown, � and I,

�
�

1+� = �(1 + i)E(��1+1�
�

1+�

+1 ) (demand) (40)

and
1 + i = I���1����

���1
�1 ��� : (interest-rate rule) (41)

�� > 1 is necessary in order to ensure a determinate initial in�ation rate and
hence a determinate initial price level1415. This can be seen by substituting the
expression for the interest rate from the interest rate rule into the demand equation.
The resulting di¤erence equation in in�ation has a unique solution for the path of
the in�ation rate only if j��j > 1, and I will assume �� to be positive. Note that this
result holds in the exact version of the model - it is a global result. The indeterminacy
question is the same in the �exible price version of the model as in the sticky price
model below, and it is independent of the speci�cation of the Phillips curve16. The
source of the indeterminacy problem is a demand equation like equation 40.

3.1 The �exible-price model solution.

In order to solve (40) and (41) I follow Henderson and Kim (2001) and use the method
of undetermined coe¢ cients. The guess for the solution for the in�ation rate is

� = �����
���1
�1 : (guess for �) (42)

In appendix B on page 20, I show that (42) is a solution of (40) and (41) with
parameters as given in table 1. � has a uniform distribution between �L and �H .

13The coe¢ cient � also represents the inverse of the intertemporal elasticity of substitution.
14Equations 40 and 41 determine a unique (expected) in�ation rate as of period 1, P1=P0, given

any initial P0=P�1 and any ��. The in�ation rate in period 0, P0=P�1,which given P�1 pins down
today�s price level P0 and the rest of the price path, is not given by the two equations, however. I
use the standard approach, and assume that we may rule out any unstable in�ation path. All but
one P0 will make the path of in�ation explode or implode if we let j �� j> 1: Hence, I assume �� > 1:
15I ignore the possibility of a second steady state equilibrium where the in�ation rate is lower than

the solution that I �nd here, as considered in e.g. Benhabib, Schmitt-Grohe, and Uribe (2001b) and
in Alstadheim and Henderson (2006). The potential multiplicity can be ruled out by an appropriate
assumption about �scal policy or by making the interest rate rule nonmonotonic in the in�ation
rate.
16The indeterminacy issue arises analogously when monetary policy is speci�ed as a money supply

rule. See section 4, Chapter 2 in Woodford (2003a), Alstadheim and Henderson (2006) and Obstfeld
and Rogo¤ (1983).
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Table 1: The �exible-price model solution
�� = [

�
1+�

� �� + ���1]
1
��

(1.1)
���1 = �

���1
��

(1.2)

� = ��
��������
L

1
1���+

�
1+�
(�
1���+

�
1+�

H � �
1���+

�
1+�

L ) 1
�H��L (1.3)

Memo: Equilibrium nominal interest rate: 1 + i = ( �
�L
)(��+����) � 1

The authorities will prefer to let the policy variable I� be as close to one as
possible given any solution for �, ���1 and ��, in order to minimize money-demand
distortions. Hence, I let I� be tied down by the zero lower bound constraint - it
should be exactly binding at the minimum value for �.

It turns out that
I� � ��

��������
L ���� (43)

minimizes the nominal interest rate given the solution of the model (see appendix B).
As indicated in table 1, the equilibrium nominal interest rate reaches its minimum
when � = �L, and its maximum when � = �H : This is true as long as ��+ ���� � 0;
which it will be in all the cases that I consider. Intuitively, the nominal interest rate
might need to be relatively high when the shock takes on a high value, because then
productivity is expected to increase (� is expected to fall), consumption and potential
output are expected to increase, and this situation is characterized by a relatively high
natural real interest rate.

If the interest rate responds to in�ation only (and �� is bounded) the contempo-
raneous in�ation rate will be

� = �(
�

�L
)

�
1+� (44)

and the nominal interest rate
1 + i = (

�

�L
)

�
1+� : (45)

Hence, the nominal interest rate �uctuates in accordance with the natural real rate
in equilibrium. In order for the demand equation (40) to hold, it has to, as long
as expected in�ation does not vary to produce the natural real interest rate. But
this means that current in�ation also has to vary in order to be consistent with the
interest rate rule.

The equilibrium solution just described in (44) and (51) does not depend on ��;
the parameter that governs determinacy. Hence, the example illustrates the point
stressed by Cochrane (2007): only out-of-equilibrium observations could help identify
the policy parameter governing determinacy in a simple case like this.

This identi�cation issue does not depend on the Phillips curve. It follows from the
forward-looking demand equation, as the one here based on the consumption Euler
equation, and it appears both in the �exible price case and sticky price case studied
below.
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3.2 First-best policy in the �exible-price model

Since output is una¤ected by monetary policy in the �exible-price model, authori-
ties only need to minimize money-demand distortions in order to maximize welfare.
Recall that the distortion from monopolistic competition is corrected by production
subsidies. From equation (20) I know that the e¢ cient level of real money balances,
M
P
� �, is reached when i = 0. From table 1 I know that I need

1 + i = (
�

�L
)(��+����) = 1: (46)

For this to hold for all �; I need

�� = �����: (47)

Given equation 1.1 in table 1, this implies

���1 =
�

1 + �
��; (48)

while �� and �� can be chosen according to (47). With this policy the equilibrium
in�ation rate is

� = �
1

1 + ��
��
+ �

1+�

(�
1+��

��
+ �
1+�

H � �
1+��

��
+ �
1+�

L )
1

�H � �L
��

��
�� �

� �
1+�

�1 (49)

= �E�1(�
1+��

��
+ �
1+� )��

��
�� �

� �
1+�

�1 :

Using the law of iterated expectations, expected �, as of period �1, is given by

E�1(�) = �E�1(�
�

1+� )�
� �
1+�

�1 = �E�1

�
�

�L

�
1+�

�
(
��1
�L
)�

�
1+� (50)

While the nominal interest rate is constant,

1 + i = 1: (51)

Intuitively, authorities are able to stabilize the nominal interest rate by letting the
expected in�ation rate instead of the nominal interest rate move along with the lagged
productivity shock; compare (44) and (44) to the two equations above. In order
to achieve a constant nominal interest rate in equilibrium, the policymaker has to
respond to the lagged productivity shock by letting ���1 =

�
1+�

��. The in�ation rate
may also vary with the contemporaneous shock, according to ��; but the nominal
interest rate is stable at zero regardless of this17. Intuitively, the nominal interest

17I� is in the case of �� > 0 given by:

I� � �
"
�

1

1 + ��
��
+ �

1+�

(�
1+ ��

��
+ �
1+�

H � �1+
��
��
+ �
1+�

L )
1

�H � �L

#���
= �1��� [E(�1+

��
��
+ �
1+� )]���
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rate does not have to vary with the contemporaneous in�ation rate. The reason is
that in�ation between yesterday and today is irrelevant in order for the natural real
rate between today and tomorrow to be attained and the consumption Euler equation
to hold.

In order to uniquely pin down real and nominal money balances authorities need
to let the nominal interest rate be marginally positive instead of letting the nominal
rate be exactly zero at any point. This can be achieved by letting I� in equation (43)
be

I� = ��
��������
L ����(1 + "); (52)

where " is an arbitrarily small but strictly positive number. With this I�, the in�ation
rate is

� = �(1 + ")E(����+
�

1+� )����
� �
1+�

�1 (53)

in equilibrium. Hence, the gross in�ation rate is on average slightly higher than �
when the nominal rate is set marginally above zero.

Note also that the no-Ponzi-game condition (19) rules out an equilibriumwhere the
nominal interest rate stays exactly at zero at all times unless consolidated nominal
public debt - �scal and monetary authorities� debt taken together, or m + b - is
decreasing. With constant or growing nominal public debt there has to be some
probability of positive nominal rates in some periods in equilibrium, see for example
Benhabib, Schmitt-Grohe, and Uribe (2001a) and Alstadheim and Henderson (2006).

The �� parameter does not appear in the �rst best solution for in�ation, output
and the interest rate. Only with suboptimal choices for �� and/or ���1; it will appear.
Hence, �� cannot be identi�ed under optimal policy in the �exible price solution..

3.3 Strict in�ation targeting in the �exible-price model

In�ation targeting has practical interest and strict in�ation targeting is one way of
achieving the �rst-best level of output in the sticky-price version of the model. Here I
will show how a stable in�ation rate can be implemented in the �exible-price model.
From the general solution for in�ation in equation (42) together with table 1, I know
that in order to stabilize the in�ation rate perfectly I need �� = ���1 = 0. If
authorities respond to shocks directly, they can let

���1 = 0 and �� =
�

1 + �
; (54)

Inserting the above expression and the solution for 1 + i in (41) and using ���1 =
�
1+��� we get

1 + i = �1���
h
E(�1+

��
��
+ �
1+� )

i���
� ��1����

�
1+���
�1

h
�E�1(�

1+ ��
��
+ �
1+� )��

��
�� �

� �
1+�

�1

i��
= 1
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in which case
� = � = �(1 + ")�

� �
1+�

L E(�
�

1+� ): (55)

If authorities choose to let �� !1, they can stabilize the in�ation rate completely
regardless of �� and ���1 since �� = ���1 = 0 also in that case. The constant in�ation
rate would still be at the same level. As the variance of � increases, or �L declines
towards zero and we consider a mean preserving spread, the in�ation rate with strict
in�ation targeting will explode, given � > 0. Strict in�ation targeting means that
the nominal interest rate is given by 1 + i = ( �

�L
)

�
1+� , while the rate of in�ation is

constant and output is at its �rst best level. Again, the equilibrium solution does
not identify ��. I know that a nominal rate equal to zero minimizes the distortion
of money demand. Hence, strict in�ation targeting is associated with a welfare loss
unless � = 0 or � is constant so that the natural real rate is constant.

4 The sticky-price model

I use the same approach as in the �exible-price case, but with price stickiness the
model is no longer superneutral, in the sense that unexpected in�ation a¤ects out-
put. I need to solve for in�ation and output simultaneously. Recall the equilibrium
conditions:

� = [
�Yf
(1
2
Y )��

�]1�[
E�1(�Y

2
s )

E�1(Y s(1
2
Y )����1)

]; (price equation) (56)

Y �� = �(1 + i)E(��1+1Y
��
+1 ); (demand) (57)

Yf = (
�Yf
(1
2
Y )��

)�1(1� )Y; (supply in �ex-price sector) (58)

and

Ys = [(
E�1f�Y 2

s g
E�1fYs(12Y )����1g

)�1�Y ]: (supply in sticky-price sector) (59)

Below I simplify the model in order to get a pair of equations in � and Y only.
Next, I use the interest-rate rule and guesses for output and in�ation solutions to
solve using the method of undetermined coe¢ cients.
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4.1 Simplifying the price equation

In order to get the price equation in terms of aggregate output and in�ation only, I
derive the sticky-price sector output and the �exible-price sector output as functions
of total output. Use (56) to substitute out E�1(�Y 2s )

E�1(Ys(
1
2
Y )����1)

in (59) to get

Ys = [�
1
 [

�Yf
(1
2
Y )��

�]
�1
 ]�1�Y ]: (60)

Rearrange (58) to get an expression for Yf in terms of Y;

Yf = ��
1
2 (
1

2
)�

�
2Y

1��
2 (1� )

1
2 : (61)

Substituting out for Yf in (60) and simplifying gives Ys as a function of Y only,

Ys = �
1�
2 (

1

2
)
�(1�)
2 Y [

(1+�)(1�)+2
2

](1� )
1�
2 : (62)

Substituting for (61) and (62) in equation (56) gives

� = [�
1
2Y

1+�
2 ]

1�
 (1� )

1�
 (

1

2
)
�(1�)


+� E�1(�

1
 Y [

(1+�)(1�)+2


])

E�1(�
1�
2 Y [

(1+�)(1�)+2
2

]����1)
: (63)

This equation says that the in�ation rate is determined by the expected in�ation rate,
actual output and expected output.

4.2 Solving the sticky-price model

I now have the price equation and the demand equation, and I add an interest-rate
rule:

� = (1� )
1�
 (

1

2
)
�
 [�

1
2Y

1+�
2 ]

1�


E�1(�
1
 Y [

(1+�)(1�)+2


])

E�1(�
1�
2 Y [

(1+�)(1�)+2
2

]����1)
] ,(price) (64)

Y �� = �(1 + i)E(��1+1Y
��
+1 ); (demand) (65)

and

I = I���1����
���1
�1 ��� : (interest-rate rule) (66)

Equations (64)-(66) can be solved for output, in�ation and the nominal interest rate,
as shown in appendix C on page 22. The solutions for output and in�ation are given
by

Y = 	� and � = �����
���1
�1 ;
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where � again is uniform between �L and �H , and the the coe¢ cients are as given
in table 2.

Table 2: The sticky-price model solution

 = ���+��f 1�2 g+
���1
��

[�+
(1+�)(1�)��

2
]

(2.1)

�� =
1�
2
f1� (1+�)[��+��f 1�2 g+

���1
��

]

[�+ 1
2
(1+�)(1�)�� ]

g (2.2)

���1 = �
���1
��

(2.3)

� = f��(��������)L g(�1����� H � �
1����� 
L )�

(1� �� � � )
�1
(�H � �L)

�1
(2.4)

	 = (1� )�
(1�)
(1+�) �


(1+�)2

�
1+� �

(�
 
f(1+�)(1�)+2g


+ 1+



H � �
 
f(1+�)(1�)+2g


+ 1+



L )�
1

1+�
�

f f(1+�)(1�)+2g


+ 1+

g


1+� �

(�
1+ 1+

2
+ 

(1+�)(1�)+2
2

� ����
H � �

1+ 1+
2
+ 

(1+�)(1�)+2
2

� ����
L )


1+� �

(1 + 1+
2
+  (1+�)(1�)+2

2
�  �� ��)

�
1+� (2.5)

Memo: The equilibrium nominal interest rate: 1 + i = ( �
�L
)(��+����) � 1

Note that equation (2.1) shows that output depends on current monetary policy,
and monetary policy one period ahead, through �� and ���1: In order to get some
intuition for the constant terms � and 	, it is useful to note that with � uniform
between �L and �H ; we have

E(�a) =

Z �H

�L

�a(
1

�H � �L
)d� =

�
1

1 + a
�1+a

1

�H � �L

��H
�L

=
1

1 + a
(�1+aH � �1+aL )

1

�H � �L
:

4.3 In�ation targeting in the sticky-price model

Authorities can achieve perfect stabilization of output (that is, output equal to
potential, or �exible-price output) if they stabilize the in�ation rate. Note that
�� = ���1 = 0 is achieved by �� =

�
1+�

and ���1 = 0 or by �� ! 1. The ad-
ditional �sticky-price part�of the 	 parameter drops out (compare the �rst line of
(2.5) to equation (38)) and  reduces to �1

1+�
; so that output is equal to the expression

in (38). The reason why a constant in�ation rate eliminates output gap distortions is
that with a constant in�ation rate there is no distortion of the relative price of sticky-
price goods. This makes sure that the allocation of production and consumption
across sectors is e¢ cient.
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With in�ation �xed, output at its �rst best level and �� = 0 so that the nominal
rate does not depend on ��, the �� is not identi�ed under strict in�ation targeting
in the sticky price model either.

The nominal interest rate cannot be stable and equal to zero if the in�ation rate
is stabilized completely. But a zero nominal interest rate is required to achieve a �rst-
best level of real money balances. The zero lower bound adds to the distortion of
money demand when the in�ation rate is stabilized, because not only will the nominal
interest rate have to be variable. It has to be variable around a mean that is above
zero and high enough to not make the nominal rate negative.

5 Optimal monetary policy in the sticky-price model

In this section, I show how the �rst-best level of both output and real money balances
is attainable in the sticky-price model. When current prices are not free to adjust, but
next period�s prices are, any necessary movements in the in�ation rate can happen
via the future level of prices instead of via the current level of prices. If authorities
respond to the current shock in the next period, and agents observe the current shock
before they set next period�s prices, the variation in the in�ation rate comes as no
surprise and is not costly. This feature of the model is due to synchronized contracts.

Recall that the �rst best level of output is given by equation (38), repeated here
for convenience:

Y = (
1

(1� )1�
)

1
1+���

1
1+� (

1

2
)�

�
1+� : (67)

For the purpose of output stabilization, I am therefore looking for a rule that yields

 = � 1

1 + �
:

With this  , 	 will also be at its �rst-best level. From table 2, I know that I need

 = �
�� + ��f1�2 g+

���1
��

[�+ (1+�)(1�)��
2

]
= � 1

1 + �
: (68)

(68) is satis�ed if �� !1 or if

�� +
���1
��

=
�

1 + �
: (69)

�k = 0 whenever (68) holds. With �k = 0; movements in the price level are known
when all price setters set their price and the relative price Ps

Pf
will be equal to its �rst-

best level
n


1�

o 1
2
. Intuitively, even if the in�ation rate is not constant, the �rst-best

level of output is reached if it is predictable.
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Any combination of ��; ���1 and �� that satis�es (69) or �� !1 will ensure that
(68) holds. But the case of

���1
��

=
�

1 + �
and �� = 0 (70)

has particular interest. The reason is that the equilibrium nominal interest rate is
given by

1 + i = (
�

�L
)��+���� :

Since �� = 0 whenever (68) holds, the nominal interest rate is also stable and equal
to zero when �� = 0 and (68) holds and �� is bounded. Hence, as long as authorities
can respond to the lagged supply shock but do not respond to the contemporaneous
shock, they are able to implement the �rst-best solution for both output and real
money balances. They are able to implement the �rst best solution by promising a
time-varying in�ation rate instead of keeping the in�ation rate constant.

Note that authorities cannot postpone the e¤ect of the � shock on the in�ation
rate further by responding to shocks lagged more than one period, and still achieve
the �rst-best solution. The reason is that authorities rely on the current variation in
the in�ation rate to create a real interest rate equal to the natural rate.

It might seem that authorities could infer the lagged supply shock from the �rst-

best solution for the in�ation rate, since the �rst best solution is � = ��
� �
1+�

��1 : One
might therefore think that responding to a function of the in�ation rate instead of
the lagged shock directly could yield the �rst-best solution. However, the �rst-best
in�ation rate depends on the lagged shock only because monetary authorities respond
to the lagged shock, as can be seen from the expression for ���1 in table 2. If
I eliminate ���1 from the interest-rate rule and let the authorities respond to the
appropriate function of the in�ation rate instead, all response parameters in the
reaction function cancel out. Authorities are left with a rule that says they should
peg the nominal rate at zero (or marginally higher). But then the model will not
have a unique solution and the in�ation rate and output will not be pinned down.

Also, one might think that authorities could implement the �rst-best solution by
responding to the lagged in�ation rate. This is not possible, however. This may be
seen by considering the demand equation, repeated here:

Y �� = �(1 + i)E(��1+1Y
��
+1 ):

I know that a �rst-best solution is characterized by output depending on � only, and
i = 0. Hence, the only way the demand equation can hold in the �rst-best case is when
the in�ation rate depends on the lagged shock. Furthermore, the in�ation rate cannot
depend on the contemporaneous shock : Whenever (68) holds so that  = � 1

1+�
,

�� = 0. This means that I cannot have a �rst-best solution where the nominal
interest rate responds to the lagged in�ation rate as an indirect way of responding to
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the lagged shock. In the �rst-best solution, the lagged in�ation rate contains useless
information about ��2 and no information about ��1.

And again, the parameter �� is not identi�ed by observing the equilibrium out-
come, which is observationally equivalent to the �rst best equilibrium under �exible
prices and does not depend on ��.

The optimal interest rate rule under optimal policy is given by

I = I���1�
�

1+�
��

�1 ��� ;

where, using �� = �� = 0 in the �rst best solution and equation (C.11) on page
23,.

I� = ����� ;

Hence, the optimal interest rate rule is equal to

I = �����
�

1+�
��

�1 ��� :

The intercept term �����
�

1+�
��

�1 depends the variance of � through � and it is
time-varying according to ��1:

6 Concluding remarks

With a Neo-Classical Phillips-Curve, the zero lower bound is not a constraint on
optimal monetary policy. Optimal policy is history dependent in the sense that the
natural real rate in�uences monetary policy with a lag, as is standard in the zero
lower bound literature. Optimal policy here is not time-inconsistent. The intercept
term in the interest rate reaction function that implements �rst best optimal policy
has to be time-varying and it depends on the distribution of the natural real rate.
The interest rate response to in�ation that establishes determinacy is not identi�ed
under optimal policy.

Appendices

A The intratemporal cost minimization problem

This appendix presents demand functions derived from the agents�intratemporal cost min-
imization problem,

Min

"
Pscs + Pfcf � �[

csc
1�
f

(1� )1�
� 1]

#
; (A.1)
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where the agent minimizes with respect to cs and cf . Ps is the price index of sticky-price
goods and Pf is the price index of �exible-price goods (time subscripts are suppressed here).
I get

Ps = �c�1s c; Pf = �(1� )c�1f c: (A.2)

De�ne the minimum total expenditure required to obtain one unit of consumption c as P
(the price index). P is then equal to �. I use (A.2) to solve for � = P as a function of
prices in the two sectors. First note that the constraint holds with equality in equilibrium,
so c = 1: I then have

� = Pscs
1


= Pfcf

1

1� 
;

which after some manipulation gives the price index

P 
s P

1�
f = �c�1 = � � P:

With P = �, the demand functions can be written

cs = (
Ps
P
)�1c and cf = (

Pf
P
)�1(1� )c:

From

cs;t � [
Z 1

j=0

(cjs;t)
��1
� dj]

�
��1 ; cf;t � [

Z 1

i=0

(cif;t)
��1
� di]

�
��1 (A.3)

I can derive demand for good j in terms of the relative price pjs
Ps
;�

cjs
cs

�
= (

pjs
Ps
)��;

and similarly for �exible-price goods. This means that demand for an individual �rms�
goods in the sticky-price sector is

cjs = (
pjs
Ps
)��cs = (

pjs
Ps
)��(

Ps
P
)�1c: (A.4)

The corresponding relationship holds for �exible-price goods, but with (1 � ) instead of
:

B The solution of the �exible-price model

The model is

� = �����
���1
�1 ; (guess for �) (B.1)

�
�

1+� = �(1 + i)E(��1+1�
�

1+�

+1 ); (demand) (B.2)
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and
1 + i = I���1����

���1
�1 ��� : (interest-rate rule) (B.3)

Use the interest-rate rule and the guess for � in the demand equation and simplify to get

�
�

1+�
��������+���1 = I��(���1)�

���1+���1��
�1 E(����+

�
1+� ): (B.4)

In order for this equation to hold for all � and ��1, it has to be the case that

�

1 + �
� ���� � �� + ���1 = 0 and ���1 + ���1�� = 0; (B.5)

which gives us equations (1.1) and (1.2) in table 1. With a uniform distribution of the
shock18

E(����+
�

1+� ) =
1

1� �� +
�
1+�

(�
1���+

�
1+�

H � �
1���+

�
1+�

L )
1

�H � �L
: (B.6)

Using (B.5) and (B.6), (B.4) can be rearranged to

1 = I��(���1)
1

1� �� +
�
1+�

(�
1���+

�
1+�

H � �
1���+

�
1+�

L )
1

�H � �L
: (B.7)

I choose the parameter I� in (B.3) so that the zero lower bound on the nominal interest
rate is never violated. With optimal monetary policy it should hold with equality at least
at one point, in order to minimize money-demand distortions. That is,

I = I���1����
���1
�1 ��� � 1

must hold with equality at least at one point. Using ���1 = ����1
��

from (B.5) and
substituting in for the solution for �, I see that it must hold with equality either when
� = �L or � = �H .

I� = �����L �����
�����
L when � (�� + ����) < 0 (B.8)

or
I� = �����H �����

�����
H when � (�� + ����) > 0:

Given that the former condition applies19, I can solve for � by using (B.7) and (B.8):

� = ��
��������
L

1

1� �� +
�
1+�

(�
1���+

�
1+�

H � �
1���+

�
1+�

L )
1

�H � �L
;

18With � uniform between �L and �H we have

E(�a) =

Z �H

�L

�a(
1

�H � �L
)d� =

�
1

1 + a
�1+a

1

�H � �L

��H
�L

=
1

1 + a
(�1+aH � �1+aL )

1

�H � �L

The variance of � is given by 1
12(�H � �L):

19We will see that in the �rst best solution, �k + ���k = 0. If authorities choose to
respond to � and �, while �k�1 = 0, �k will be non-negative. Hence, in all cases that I
consider in this paper, the former case applies.
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which is equation (1.3) in table 1. The equilibrium nominal interest rate is given by

1 + i = I���1����
���
�1 (�

��������
���1��
�1 ) = (

�

�L
)��+���� ; (B.9)

where I have used (B.8) and (B.5). I will want to adjust I� to make sure that the nominal
rate is always marginally higher than zero. In that case, I have 1+ i =( �

�L
)��+����(1+ "):

C The solution of the sticky-price model

I will work with the system in logs. The price equation, interest-rate rule and demand
equations are (small letters denoting logs of capital letters):

� =
1� 


f1
2
ln�+

1 + �

2
y + ln(1� )g (C.1)

+ ln  � �


ln 2 + ln

E�1(�
1
 Y [

(1+�)(1�)+2


])

E�1(�
1�
2 Y [

(1+�)(1�)+2
2

]����1��1�1)��1

i = i� � ln � + �� ln�+ ���1 ln��1 + ���; (C.2)

and
��y = ln � + ln I + lnE(��1+1Y

��
+1 ): (C.3)

I guess solutions for output and in�ation in logs,

y = ln	 +  ln� (C.4)

and
� = ln� + �� ln�+ ���1 ln��1: (C.5)

First, substitute (C.2), (C.4) and (C.5) into (C.3) to get the following version of the demand
equation:

��[ln	 +  ln�] = i� + �� ln�+ ���1 ln��1 (C.5)

+�����1 ln��1 + ��[ln� + �� ln�]� ���1 ln�+ lnE(�
�1�

���
+1 	

����� +1 ):

In order for this equation to hold for all �; I need

�� � �� � ���� + ���1 = 0 (C.6)

and also
���1 + �����1 = 0: (C.7)

22



Next, use (C.2), (C.4) and (C.5) in (C.1) to get the following version of the price equation

�� ln� =
1� 


f1
2
ln�+

1 + �

2
(ln	 +  ln�) + ln(1� )g (C.8)

+ ln  � [�(1� )


+ �] ln 2 + ln

E�1(�
1
 Y [

(1+�)(1�)+2


])

E�1(�
1�
2 Y [

(1+�)(1�)+2
2

]������)
:

In order for this equation to hold for all � I need

�� =
1� 

2
+
(1 + �)(1� )

2
 : (C.9)

I have solved for three of the parameters, equation (C.6), (C.7) and (C.9) are three equations
in three unknown. These give equations (2.1)-(2.3) in table 2. As a consistency check, note
that if  = 0, so that all prices are �exible, I get  = � 1

1+�
from (C.9), which means that

output will be equal to potential (at least up to a scaling parameter, which is yet to be
solved for). Furthermore, in this case I would get

�

1 + �
� �� � ���1 = ���� => �� =

1

��
f �

1 + �
� �� +

���1
��

g

as in �exible-price case. I next need to derive

lnE(��1�
���
+1 	

����� +1 ) (C.10)

in order to get an equation in the unknown coe¢ cients from the demand equation (C.5).
As before I use a uniform distribution20 of � between �L and �H and get

lnE(��1+1Y
��
+1 ) = � ln�� � ln	� ���1 ln�+

ln(�
1����� 
H � �

1����� 
L )� ln(1� �� � � )� ln(�H � �L):

Substitute this into the demand equation (C.5), use (C.6), (C.7) and (C.9), rearrange and

ln� =
1

1� ��
fi� + ln(�1����� H � �

1����� 
L )� ln(1� �� � � )� ln(�H � �L)g:

As in the �exible-price case, I impose the constraint that i� = 0 when the supply shock
takes on the minimum value, so that21

ln(1 + i�) = ln � � �� ln�L � �� ln�� ���� ln�L; (C.11)

which means that

ln� =
1

1� ��
fln � � �� ln�L � �� ln�� ���� ln�L

+ ln(�
1����� 
H � �

1����� 
L )� ln(1� �� � � )� ln(�H � �L)g:

20See footnote 18.
21In order to ensure a unique equilibrium I will want to add a constant term ln(1+ "); so

that the nominal rate becomes strictly positive.

23



Simplifying and expressing this in levels, I get

� = f����������L g(�1����� H � �
1����� 
L )(1� �� � � )

�1
(�H � �L)

�1
:

This is equation (2.4) in table 2. For the purpose of the price equation (C.8), I need

lnE�1(�
1
 f	� g[

(1+�)(1�)+2


])� lnE�1(�
1�
2 f	� g[

(1+�)(1�)+2
2

]������) (C.12)

= f[ (1 + �)(1� ) + 2

2
] + �g ln	

+ ln(�
1+ 

(1+�)(1�)+2


+ 1


H � �
1+ 

f(1+�)(1�)+2g


+ 1


L )

� ln(1 +  f(1 + �)(1� ) + 2g


+
1


)

� ln(�1+
1+
2
+ 

(1+�)(1�)+2
2

� ����
H � �

1+ 1+
2
+ 

(1+�)(1�)+2
2

� ����
L )

+ ln(1 +
1 + 

2
+  

(1 + �)(1� ) + 2

2
�  �� ��):

This expression must be substituted into (C.8). In addition, use the solutions already
obtained for ��; ���1 and  ; and (C.8) becomes

ln	 = � 1

(1 + �
[(1� ) ln(1� ) +  ln  � � ln 2+ (C.13)

+ ln(�
1+ 

f(1+�)(1�)+2g


+ 1


H � �
1+ 

f(1+�)(1�)+2g


+ 1


L )

� ln(1 +  f(1 + �)(1� ) + 2g


+
1


)

� ln(�1+
1+
2
+ 

(1+�)(1�)+2
2

� ����
H � �

1+ 1+
2
+ 

(1+�)(1�)+2
2

� ����
L )

+ ln(1 +
1 + 

2
+  

(1 + �)(1� ) + 2

2
�  �� ��)]:

Note that the constant term includes the term that I would have in the �exible-price case
(the right hand side of the �rst line of (C.13), but adds on a term that depends on the
distribution of �. In levels, (C.13) becomes

	 = (1� )�
(1�)
(1+�) �


(1+�)2

�
1+� �

(�
 
f(1+�)(1�)+2g


+ 1+



H � �
 
f(1+�)(1�)+2g


+ 1+



L )�
1

1+�


�f f(1 + �)(1� ) + 2g


+
1 + 


g


1+� �

(�
1+ 1+

2
+ 

(1+�)(1�)+2
2

� ����
H � �

1+ 1+
2
+ 

(1+�)(1�)+2
2

� ����
L )


1+� �

(1 +
1 + 

2
+  

(1 + �)(1� ) + 2

2
�  �� ��)

�
1+� :

This is equation (2.5) in table 2. The expression for the equilibrium nominal interest rate
is as in the �exible-price case.
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D Solution when price setters in the sticky-price sector have no information

about the current shock

Taking expectations two periods in advance in the �rst order condition for optimal price
setting in the sticky-price sector (equation (22)) but otherwise doing the same substitutions
implies that the model becomes

� = [
�Yf
(1
2
Y )��

�]1�[
E�2(�Y

2
s )

E�2(Ys(
1
2
Y )����1��1�1)��1

]; (price equation) (E.1)

(
1

2
Y )�� = �(1 + i)E(��1+1f

1

2
Y+1g��); (demand) (E.2)

Yf = (
�Yf
(1
2
Y )��

)�1(1� )Y; (�ex-price output) (E.3)

and

Ys = [(
E�2f�Y 2

s g
E�2fYs(12Y )����1�

�1
�1g��1

)�1�Y ]: (sticky-price output) (E.4)

Substituting out for Yf and Ys in the same way as for the model in the main text and taking
logs, the system becomes

� =
1� 


f1
2
ln�+

1 + �

2
y + ln(1� )g (E.5)

+ ln  � [�

] ln 2 + ln

E�2(�
1
 Y [

(1+�)(1�)+2


])

E�2(�
1�
2 Y [

(1+�)(1�)+2
2

]����1��1�1)��1
;

i = i� � ln � + �� ln�+ ���1 ln��1 + ���2 ln��2 + ���; (E.6)

and

��y = ln � + ln I + lnE(��1+1Y
��
+1 ): (E.7)

I guess solutions for output and in�ation in logs22,

y = ln	 +  ln�: (E.8)

and
� = ln� + �� ln�+ ���1 ln��1 + ���2 ln��2: (E.9)

First, substitute equations (E.6), (E.8) and (E.9) into equation (E.7). I get

��[ ln�] = ln � + [i� � ln � + �� ln�+ ���1 ln��1

+���2 ln��2 + ��fln� + �� ln�+ ���1 ln��1

+���2 ln��2g]� ���2��1 � ���1 ln�+ lnE(�
�1�

���
+1 �

�� 
+1 ):

22I have included response to the two-period lags shock in the interest rate rule and a
term including ��2 in the guess for the in�ation rate. This is done in order to make the
model more general.
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In order for this equation to hold for all �,��1 and ��2 I need

�� = �� + ���� � ���1: (E.10)

Furthermore,
���1 + �����1 � ���2 = 0; (E.11)

and
���2 + �����2 = 0: (E.12)

Next, substitute equations (E.8) and (E.9) into (E.5) to get:

�� ln�+ ���1 ln��1 =
1� 


f1
2
ln�+

1 + �

2
[ln	 +  ln�] + ln(1� )g (E.13)

+ ln  � [�

] ln 2 + [[

(1 + �)(1� ) + 2

2
] + �]] ln	

+ ln
E�2(�

1
 � [

(1+�)(1�)+2


])

E�2(�
1�
2 � [

(1+�)(1�)+2
2

]� ������
����1���
�1 )

� �� ln���1:

I now see that I need

�� =
1� 

2
+
(1� )(1 + �) 

2
and ���1 = ��� (E.14)

in order for this to hold for all �, ��1. If the ��1 shock had been known when expectations
were made, there would have been no restriction on ���1 resulting from this equation. The

two equations involving  are �� = �� + ���� � ���1 and �� =
1�
2
+ (1�)(1+�) 

2
.

These are the same as before, except that ���1 is restricted to be equal to ���; which
means that

 = �
�� + (�� + 1)f1�2 g
[�+ (�� + 1)

(1+�)(1�)
2

]
: (E.15)

The constant terms are equal to the case in the main text. To see this, note that since
���1 = ���; the term involving expectations of ��1 drops out from inside the expectation
operator in equation (E.13): The other constant terms are as before. Terms involving
���1; ���2 and ���2 cancel out and the nominal interest rate is i = i� � ln � + �� ln�+
��fln� + �� ln�g: I ensure that the nominal rate is never negative but as low as possible
with the same restriction on i� as before. The equilibrium nominal interest rate is

i = (�� + ����) ln�� (�� + ����) ln�L; (E.16)

as in the model of the main text. Again, the �rst-best solution for output is achieved
by �� =

�
1+�

or by �� ! 1. But now, ���1 cannot be used as an alternative way to
achieve the �rst-best solution for output. Since �� = 0 in the �rst-best solution for output,
���1 = 0 as well. In order for the nominal rate to be stable I need ��+ ���� = 0 exactly
as in the case with one period preset prices. But given the �rst-best solution for output,
 = � 1

1+�
; I have (using E.10)

�� + ���� =
�

1 + �
:
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Hence the �rst-best solutions for output and real money balances are not simultaneously
attainable. The in�ation rate may depend on ��2 if ���2 6= 0 as seen from equation E.12.
But that does not help achieve the �rst-best solution.
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