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Motivation

• The new generation of new-Keynesian DSGE models (Christiano et al.,

Smets and Wouters . . . ) fits the data reasonably well, and hence can be
used for policy analysis at Central Banks.

• These models contain many bells and whistles (and persistent
shocks) – some are more “structural” than others.

• Which features are really needed, and which can we get rid of?

• Two approaches for model comparison:

• Impulse responses (CEE)

• Bayesian model comparisons via Marginal Likelihoods (Smets and
Wouters)
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Priors and Model Comparisons

• The marginal likelihood is the integral of the likelihood with respect
to the prior

• . . . hence the choice of the prior matters
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Leveling the Playing Field

• In Bayesian model comparisons, priors should be chosen so that all
models are given a fair chance “a priori”.

• We focus on priors for the auxiliary parameters (correlation and st.
dev. of exogenous shocks):

• Hard to have intrinsic beliefs about the driving process of these
unobservable shocks

• . . . but we do have beliefs about the implications for the observables
(i.e., volatility of inflation, etc.).

1 Choose priors so that the implications for the endogenous variables
are close across models.

2 Introduce dependence among parameters.
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Identifying Backward Looking Behaviour in a Simple
Example

• Take two models:

M1 : yt = 1
α IE t [yt+1] + ρyt−1 + ut , ut = εt ∼ iid(0, σ2).

M2 : yt = 1
α IE t [yt+1] + ut , ut = ρut−1 + εt ∼ iid(0, σ2).

• Solution:

M1 : yt = 1
2 (α−

√
α2 − 4ρα)yt−1 + 2α

α+
√
α2−4ρα

εt ,

M2 : yt = ρyt−1 + 1
1−ρ/αεt

• Lubik and Schorfheide, Bayer and Farmer.
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Priors and Model Comparisons in the Simple Example

1 Use same prior for M1 and M2

2 Choose prior for and M2 so that the same “a priori” implications for
moments of the endogenous variables.



Priors and Model Comparisons in the Simple Example

1 Use same prior for M1 and M2

2 Choose prior for and M2 so that the same “a priori” implications for
moments of the endogenous variables.

Specification ln p(Y )

Model M1, Prior 1 -105.93

Model M2, Prior 1 -123.53

Model M2, Prior 2 -105.70

Model M1, Prior 3 -108.93

Model M2, Prior 3 -108.24



Standard Practice in Bayesian DSGE Model Comparisons

1 Choose the priors from . . .

2 Use the same prior for all models considered.
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Adjusting Prior Distributions for Model Comparisons

1 Models Mi , i = 1, . . . , J with parameter vectors θ(i).

2 Split θ(i) into θ(i) = [θ
(i)
1 θ

(i)
2 ] where θ1 collects the “deep”

parameters (prior distributions based on micro evidence) and θ2 is a
sub-vector of auxiliary parameters.

3 Pick a benchmark model (1) and a specific set of parameters θ(1)

(say the prior mean), and compute the population covariance

matrices of the endogenous variables: ΓYY (θ(1)) (shorthand notation Γ
(1)
YY )

, ΓXX (θ(1)), etc.
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Adjusting Prior Distributions for Model Comparisons . . .

4 Define the correction:

L(θ(i)|Γ(1)
YY , Γ

(1)
XY , Γ

(1)
XX ) = |Σ∗(θ(i))|−(T∗+n+1)/2

× exp

{
−T∗

2 tr

[
Σ∗(θ

(i))−1(Γ
(1)
YY − 2Φ∗(θ

(i))Γ
(1)
XY + Φ′∗(θ

(i))Γ
(1)
XXΦ∗(θ

(i))

]}
.

where Φ∗(θ) = [ΓXX ]−1ΓXY , Σ∗(θ) = ΓYY − ΓYX [ΓXX ]−1ΓXY .

5 Rather than the standard prior:

p(θ1, θ2) = π(θ1)π(θ2).

Use the corrected prior:

p∗(θ1, θ2) = π(θ1) c1(.)L(θ1, θ2|Γ(1))π(θ2).

where c1(.) guarantees the prior integrates to one.
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. . . In Plain English

1 Generate artificial data from the benchmark model.

2 Estimate model (i) on this artificial data
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. . . In Plain English

1 Generate artificial data from the benchmark model.

2 Estimate model (i) on this artificial data
. . . fixing the “deep” parameters (θ1) and letting only the auxiliary
parameters (θ2) vary.

Outcome:

1 Make sure that for all models considered the auxiliary parameters are
chosen so that the implications for second moments are as close as
possible to the benchmark’s.

2 Introduce correlation among auxiliary parameters.
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DSGE Model

• Model is a variant of Altig, Christiano, Eichenbaum, and Linde
(2002); Christiano, Eichenbaum, and Evans (2004), Smets and
Wouters (2003).

• Continuum of households, they maximize:

IE t

∑∞
s=0 β

s [log(Ct+s − hCt+s−1)−
ϕt+s
1+νl

L1+νl
t+s . . .

· · ·+ χ
1−νm

(
Mt+s

Zt+sPt+s

)1−νm

],

• Accumulate capital: K̄t = (1− δ)K̄t−1 +
“
1− S

“
It

It−1

””
It ,

• Rent out “effective” capital Kt = utK̄t−1 and pay the utilization
cost a(ut)K̄t−1.
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DSGE Model – continued

• Sticky wages: reset wages with probability 1− ζw .

• Partial indexation: Wt+s =
`
Πs

l=1(π∗e
γ)1−ιw (πt+l−1e

γ)ιw
´
W̃t .

• Continuum of intermediate goods producers, who use Cobb-Douglas
technology:

Yt(i) = Kt(i)
α(ZtLt(i))

1−α

with unit root in technology: zt = log(Zt/Zt−1) has mean γ.

• Sticky prices: reset prices with probability 1− ζp + Partial
indexation (ιp).

• Yt(i) packed into a composite good: Yt =

»R 1

0
Yt(i)

1
1+λf ,t di

–1+λf

.
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DSGE Model – continued

• Government balances budget

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt

where Gt = (1− 1/gt)Yt .

• The central bank follows a nominal interest rate rule:

Rt

R∗ =

(
Rt−1

R∗

)ρR
[(

πt

π∗

)ψ1
(

Yt

Y ∗
t

)ψ2
]1−ρR

σReεR,t

where Y ∗
t is the stochastic steady state level of output.

• All shocks follow an AR(1) process (except εR,t , which is iid).
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Measurement equations

100 quarters of data ending Q1-2004.

• Output growth (log differences, quarter-to-quarter, in %):
100× ( lnYt − lnYt−1 ) = 100× ( ŷt − ŷt−1 + ẑt ) + 100γ

• Hours worked (log): ln Lt = 100× L̂t + ln Ladj

• Inflation (annualized, in %):
400× ( lnPt − lnPt−1 ) = 400π̂t + 400 lnπ∗

• Nominal interest rate (annualized, in %):
400× ( lnRt ) = 4× 100R̂t + 400 ∗ lnR∗

Del Negro, Schorfheide Leveling the Playing Field



The “Big Ratios” and Hours Worked: Smoothed
Periodograms for Model and Data

Prior:



The “Big Ratios” and Hours Worked: Smoothed
Periodograms for Model and Data

Posterior:
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Some Examples
Baseline vs Flexible Wages & Prices
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Results: Log Marginal Data Densities Relative to
Benchmark

Specification T ∗ = 0 T ∗ = 4 T ∗ = 25

Benchmark 0.00 0.40 -3.93
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Results: Log Marginal Data Densities Relative to
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Specification T ∗ = 0 T ∗ = 4 T ∗ = 25

Benchmark 0.00 0.40 -3.93

Full Indexation -10.41 -13.57 -25.07

No Indexation 2.01 3.80 -0.70
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Results: Log Marginal Data Densities Relative to
Benchmark

Specification T ∗ = 0 T ∗ = 4 T ∗ = 25

Benchmark 0.00 0.40 -3.93

Full Indexation -10.41 -13.57 -25.07

No Indexation 2.01 3.80 -0.70

No Price and Wage Stickiness -47.09 -49.71 NaN

No Wage Stickiness 4.91 8.08 4.38

No Wage Stickiness and No Indexation 7.31 9.50 6.68

Del Negro, Schorfheide Leveling the Playing Field



Log Marginal Data Densities “Fan”
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Conclusion

• Priors matter

• Methodology for choosing “reasonable” priors for auxiliary
parameters

1 Introduce dependence among parameters.

2 Levels the playing field for model comparisons – makes sure that the
prior implications for the moments of the endogenous variables is the
same across models.
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Conclusion

• Priors matter – using the same priors across different models may
not be a good idea.

• Methodology for choosing “reasonable” priors for auxiliary
parameters – focusing on the implications for the volatilities and
correlation of the observables.

1 Introduce dependence among parameters.

2 Levels the playing field for model comparisons – makes sure that the
prior implications for the moments of the endogenous variables is the
same across models.
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Parameters – Baseline model
Parameter Prior Mean Prior Stdd Post Mean 90% Lower Band 90% Upper Band

ζp 0.600 0.200 0.684 0.581 0.786
ιp 0.500 0.280 0.055 0.000 0.125
s ′ 4.000 1.500 8.790 5.753 11.814
h 0.700 0.050 0.759 0.678 0.840
a′ ′ 0.200 0.100 0.175 0.038 0.312
ζw 0.600 0.200 0.124 0.023 0.219
ιw 0.500 0.280 0.464 0.009 0.871
ψ1 1.500 0.400 2.037 1.624 2.414
ψ2 0.200 0.100 0.075 0.034 0.117
ρr 0.500 0.200 0.690 0.632 0.753
ρz 0.400 0.250 0.532 0.333 0.709
ρφ 0.750 0.250 0.978 0.952 1.000
ρg 0.750 0.250 0.915 0.856 0.983
σz 0.500 4.000 0.865 0.739 0.989
σφ 4.500 4.000 2.986 2.187 3.798
σg 0.750 4.000 0.625 0.522 0.731
σr 0.200 4.000 0.288 0.251 0.325



Parameters – Baseline model w/ correction

Parameter Prior Mean Prior Stdd Post Mean 90% Lower Band 90% Upper Band

ζp 0.600 0.200 0.736 0.663 0.810
ιp 0.500 0.280 0.050 0.000 0.114
s ′ 4.000 1.500 8.351 5.361 11.373
h 0.700 0.050 0.740 0.659 0.823
a′ ′ 0.200 0.100 0.130 0.021 0.236
ζw 0.600 0.200 0.144 0.023 0.261
ιw 0.500 0.280 0.474 0.005 0.877
ψ1 1.500 0.400 1.931 1.545 2.304
ψ2 0.200 0.100 0.086 0.042 0.130
ρr 0.500 0.200 0.717 0.661 0.771
ρz 0.400 0.250 0.266 0.065 0.465
ρφ 0.750 0.250 0.951 0.905 1.000
ρg 0.750 0.250 0.894 0.841 0.947
σz 0.500 4.000 0.773 0.681 0.866
σφ 4.500 4.000 3.167 2.418 3.923
σg 0.750 4.000 0.803 0.699 0.912
σr 0.200 4.000 0.277 0.245 0.308



Parameters – No Wage Rigidity & Ind.

Parameter Prior Mean Prior Stdd Post Mean 90% Lower Band 90% Upper Band

ζp 0.600 0.200 0.767 0.716 0.817
s ′ 4.000 1.500 9.062 6.070 12.039
h 0.700 0.050 0.775 0.704 0.851
a′ ′ 0.200 0.100 0.225 0.068 0.369
ψ1 1.500 0.400 2.039 1.665 2.390
ψ2 0.200 0.100 0.074 0.034 0.113
ρr 0.500 0.200 0.680 0.621 0.740
ρz 0.400 0.250 0.456 0.313 0.596
ρφ 0.750 0.250 0.979 0.957 1.000
ρg 0.750 0.250 0.933 0.878 1.000
σz 0.500 4.000 0.842 0.736 0.949
σφ 4.500 4.000 2.755 2.041 3.411
σg 0.750 4.000 0.641 0.540 0.734
σr 0.200 4.000 0.295 0.256 0.332



IRFs Money – Baseline
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IRFs Tech – Baseline

 0  4  8 12 16
0

0.5

1

1.5

2

2.5

3
Y

 0  4  8 12 16
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
H

 0  4  8 12 16
−0.6

−0.4

−0.2

0

0.2

0.4
Inflation

 0  4  8 12 16
−0.6

−0.4

−0.2

0

0.2

0.4
R



IRFs Money – No Wage Rigidity & Ind.
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