Market Structure, Counterparty Risk, and Systemic Risk

Dale W.R. Rosenthal

UIC, Department of Finance

23 September 2011 Bank of Finland/CEPR/JFI/SUERF conference "The Future of Risk Management"

Counterparty Risk

- Counterparty: other side of ongoing financial agreement.
 - A bank enters into a swap with you on the S&P 500.
- Counterparty Risk
 - Risk resulting from default/bankruptcy of a counterparty.
 - Strictly: Risk to you from one of your counterparties.
 - Broadly: Includes effects on overall market (our concern).
- This broad definition is one definition of systemic risk.

Counterparty Risk to Systemic Risk

• Counterparty risk affects market when large failure looms:

- Near-bankruptcy of Bear Stearns (May 2008)
- Bankruptcy of Lehman Brothers (Sep 2008)
- Bankruptcy of Refco Inc? (Oct 2005, owned #1 CME broker)
- Outstanding notional at CME before ceasing trading:

Bear	Lehman	Refco LLC
\$761 BB	\$1,150 BB	\$130 BB

- N.B. No defaults or trade halts at CME for these events.
- Other bankruptcies: Askin (1994), LTCM (1998, why I care).
- Is counterparty risk an "accelerant" in financial crises?

Systemic Risk

- Distress increases volatility sharply and significantly.
 - \bullet Widens spreads: transactions costs $\uparrow;$ market liquidity $\downarrow.$
 - Volatility is pushed onto the survivors (externality).
- Crisis bankruptcies have real costs:
 - Virtuous, vicious circles of market and funding liquidity¹.
 - Reduced funding liquidity affects non-financial firms also.
 - Less invested in risky assets; allocative inefficiency?
 - Many people unemployed at once; complicates job searches.
 - Also see a sudden and commensurate drop in tax revenues.
- Market structure may magnify problems.
- Market fragility estimable with a few metrics of market core.

¹Brunnemeier and Pedersen (2009).

Model: Market Structures

• Investigate two extremes of *n*-counterparty networks.

Star networkComplete network(Market with CCP2)(Bilateral "OTC" market)

- Each node is a counterparty (capital K, risk aversion λ).
- Each edge is a contract³ linking counterparties i and j
- Contract exposure: $q_{ij} = -q_{ji}; \ q_{i < j} \stackrel{iid}{\sim} N(0, \eta^2)$
- Counterparty *i*'s net exposure: $Q_i = \sum_{j \neq i} q_{ij}$.
- Same net exposures $(Q_i$'s) in both networks.

²Central counterparty.

³A swap or forward on a risky asset.

Model: Event Timing

To study counterparty risk, events occur at discrete times.

- t = 0: Bankruptcy of counterparty *n* occurs.
 - All contracts with counterparty *n* are invalidated.
 - Pushes unwanted exposure onto other n-1 counterparties.
- t = 1: Living counterparties trade in response to bankruptcy.
- t = 2: Living counterparties close out bankruptcy-induced exposure.

Order of trading in a period is random, not strategic.

Model: Price Impact of Trading

- Each counterparty *i* trades x_i shares at time t = 1.
- Huberman and Stanzl (2004) arbitrage-free price impact.
 - Impact has linear permanent component⁴.
 - Permanent component impacts prices for later traders.
- Trade ordering, price impact create low and high prices.
- Time periods are very short; two simplifying assumptions:
 - Prices have no drift other than price impact due to trading.
 - Price diffusion is Gaussian (not log-normal).
- Defer handling crisis-related adverse selection.

⁴Price impact could arise from inventory risk cost, non-crisis **UIC** Liautaud adverse selection.

Effects of Invalidated Contracts

- Suppose counterparty A is net long the market.
- \Rightarrow Other counterparties are net short the market.
- These are their preferred equilibrium positions.
- Thus when counterparty A defaults:
 - Survivors must re-create exposure from counterparty A.
 - Survivors become net sellers.
- CCP market: only CCP trades; net sell.
- OTC market: some counterparties will sell, some will buy.
- However, counterparties trade in own interest.
 - Do they rehedge immediately? Push market further?

Model	Large Bankruptcy	Conclusion

Large Bankruptcy

- Consider bankruptcy of a large financial firm.
- Assume large market move r_0 at t = 0 induces bankruptcy.
- Net exposure Q_n probably large; estimate via EVT⁵.

$$\hat{Q}_{n} = \frac{-K}{r_{0}} + \frac{\eta\sqrt{n-1}}{c_{n}(1-e^{-e^{-c_{n}\kappa_{1}-d_{n}}})} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}e^{-k(c_{n}\kappa_{1}+d_{n})}}{kk!}$$
(1)
where $\kappa_{1} = \frac{-K}{r_{0}\eta\sqrt{n-1}}$ (minimum exposure causing death),
 $c_{n} = \frac{1}{\sqrt{2\log(n)}}$, and $d_{n} = \sqrt{2\log(n)} - \frac{\log\log(n) + \log(16\tan^{-1}(1))}{2\sqrt{2\log(n)}}$.

⁵Equivalent: endow all counterparties with perfect information, **UIC** Liautaud examine most likely $Q_n|r_0$.

Large Bankruptcies

- For large Q_n , trading at t = 1, 2 will move market a lot.
- Move will be further in direction that caused bankruptcy.
- This raises two distressing possibilities:
 - Contagion: move may cause other counterparties to fail; or,
 - Checkmate: hedging may bankrupt the hedger.
- Counterparties anticipate these, respond selfishly.
- For bilateral OTC market, all counterparties may trade.
 - All anticipate follow-on bankruptcies to hedge \hat{Q}_f .
 - Trouble: $\nu > 1$ (overtrading at t = 1) to be expected.
 - Longs, shorts may largely self-segregate rehedge timing.
- Thus network structure matters.

- CCP anticipates follow-on bankruptcies; equilibrium yields
- Follow-on bankruptcy exposure \hat{Q}_f (distress exposure):

$$\hat{Q}_{f} = (n-1)^{3/2} \eta \frac{\phi(\kappa_{2}) - \phi(\kappa_{1})}{\Phi(\kappa_{1})} \quad \text{where}$$

$$\kappa_{2} = \frac{-\kappa p_{0}/[\eta \sqrt{n-1}]}{p_{0}r_{0} - \pi(\hat{Q}_{n} + \hat{Q}_{f})} \quad (\text{min exposure for follow-on death}).$$
(2)

• # follow-on bankruptcies \hat{b} (distress pervasiveness):

$$\hat{b} = (n-1) \frac{\int_{\kappa_2}^{\kappa_1} \phi(z) dz}{\int_{-\infty}^{\kappa_1} \phi(z) dz} = (n-1) \left(1 - \frac{\Phi(\kappa_2)}{\Phi(\kappa_1)} \right)$$
(3)
UIC Liautauc

Large Bankruptcy: Equilibrium OTC Net Trade

- OTC traders anticipate one another, follow-on bankruptcies.
- However: those most at-risk rehedge quickly, others delay.
- Random trade sequence \Rightarrow uncertain low of rehedging S_{n-1} .
- Use these to solve for equilibrium OTC net trade.

$$\kappa_{2} = \frac{-\kappa_{p_{0}}}{\eta\sqrt{n-1}(p_{0}r_{0}+\pi E(\underline{S_{n-1}}|\nu))},$$

$$\hat{Q}_{f} = (n-1)^{3/2}\eta\frac{\phi(\kappa_{2})-\phi(\kappa_{1})}{\Phi(\kappa_{1})}.$$
(5)

• Important to note that $\nu \ge 1$ (in $E(\underline{S_{n-1}})$).

• Finding ν is hard: *n*-player (random) game; usually c1.75.

Bad Behavior? Checkmate and Hunting

Proposition (Checkmate)

A large enough initial bankruptcy may yield a follow-on bankruptcy in expectation — despite any finite effort by the troubled counterparty.

Proposition (Hunting)

For a complete network of 3 or more counterparties and a large enough initial bankruptcy, two or more other counterparties may profit by driving a survivor into (follow-on) bankruptcy.

The Other Extreme: A Separating Equilibrium?

Model

- Another (extreme) possibility exists in bilateral OTC markets:
 - Buyers and sellers may separate when they trade.
- Those who are same side as net rehedge rush to hedge first.
- Those on other side wait to allow maximum distress.
- If net rehedge makes sellers panic, net sale in period 1 is:

$$-E(\sum_{i=1}^{n-1} [x_i]^{-1} | \sum_{i=1}^{n-1} x_i = -\hat{Q}_n - \hat{Q}_f)$$

$$\approx -(n-1)^{3/2} \eta \phi(\mu^*) - (\hat{Q}_n + \hat{Q}_f)(1 - \Phi(\mu^*))$$
(6)
(7)

where $\mu^* = \frac{\hat{Q}_n + \hat{Q}_f}{(n-1)^{3/2}\eta}$ (net rehedge in std devs/survivor) and ϕ, Φ are standard normal pdf, cdf.

Large Bankruptcies: Indicative Distress

- Consider large bankruptcy for n = 10 counterparties⁶.
- Std deviation of bilateral contract exposure $\eta = 1,000,000$.
- Distress exposure \hat{Q}_f and pervasiveness \hat{b} vs. \hat{Q}_n .

Lines: (**P**)ooled OTC; (**S**)eparated OTC; (**C**)CP $\underline{P-S: Envelopes of distress exposure, pervasiveness}$ **UIC** Liautaud ⁶Price impact parameters are as in Almgren and Chriss (2001).

Large Bankruptcies: Example of Market Impact

- Suppose $\hat{Q}_n = 10,000,000$; GARCH variance decay of 0.9.
- For CCP market:
 - Expected market impact: -\$30.
 - Effective annual volatility goes from 30% to 38%.
- If pooled OTC buyers, sellers overtrade $1.75 \times$ at t = 1.
 - Expected market impact: -\$31.
 - Annual volatility \uparrow to 328% (instant.), 146% (effective).
- If OTC buyers and sellers separate, at t = 1:
 - Expected market impact: -\$41.
 - Annual volatility \uparrow to 596% (instant.), 268% (effective).

Large Bankruptcies: Example of Real Effects

- Suppose $\hat{Q}_n = 10$ MM, market size of \$40 MM⁷.
- If 8% equity premium and mean risk aversion of $\hat{\lambda} = 3$:
 - Equilibrium allocation to risky asset: 29% (71% cash).
 - Post-crisis: 19% (CCP), 1.2% (OTC pool), 0.4% (OTC sep).
- Cost of distress externality:
 - \$3.2MM (CCP), \$123 MM (OTC pool), \$425 MM (OTC sep).
 - $\bullet\,$ Cost of OTC market distress is 3–11 $\times\,$ market size.
- Given 2–3 bankruptcies; mean employees, compensation:
 - 260,000-400,000 unemployed; \$33-\$49 billion pay loss.
 - At 40% total taxes: revenue loss of \$13-\$20 billion.

⁷Approximately $2(\hat{Q}_n + \hat{Q}_f)$.

Large Bankruptcies: Not So Random

Model

- Complete networks admit two destabilizing events:
 - Checkmate: weak counterparty may have no beneficial trade.
 - Hunting: counterparties force others into bankruptcy.
- Worse, hunting is a full equilibrium behavior.
 - Market may be pushed far beyond one follow-on bankruptcy.
- Are counterparties selfishly amoral/evil? Maybe not.
 - Trade amount may pre-hedge expected follow-on bankruptcies.
 - This reduces surprise need for trading in period 2.
- CCP markets have fewer such destabilizing events.
 - Suggests central clearing reduces OTC market volatility.

	Model	Large Bankruptcy	Conclusion
Conclusion			

- Even small bankruptcies temporarily increase volatility.
- For a large bankruptcy in a bilateral OTC market:
 - Counterparties may be unable to save themselves (checkmate).
 - Counterparties may hunt their weakest peers for profit.
 - Volatility externality (and thus cost) higher than CCP market.
- Self-segregating buyers, sellers in OTC markets can be nasty:
 - Externality distress cost \gg market size. (market failure?)
- Suggests benefits to centralized clearing in OTC markets⁸.
- Volatility externality cost \Rightarrow when to move markets to CCP.
- May be able to measure when markets are more/less brittle.
 - n, η, \bar{K} for part of market like complete network.

UIC Liautaud

⁸Ongoing: Is a CCP capital efficient?