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Counterparty Risk

Counterparty: other side of ongoing financial agreement.

A bank enters into a swap with you on the S&P 500.

Counterparty Risk

Risk resulting from default/bankruptcy of a counterparty.
Strictly: Risk to you from one of your counterparties.
Broadly: Includes effects on overall market (our concern).

This broad definition is one definition of systemic risk.
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Counterparty Risk to Systemic Risk

Counterparty risk affects market when large failure looms:

Near-bankruptcy of Bear Stearns (May 2008)
Bankruptcy of Lehman Brothers (Sep 2008)
Bankruptcy of Refco Inc? (Oct 2005, owned #1 CME broker)

Outstanding notional at CME before ceasing trading:

Bear Lehman Refco LLC
$761 BB $1,150 BB $130 BB

N.B. No defaults or trade halts at CME for these events.

Other bankruptcies: Askin (1994), LTCM (1998, why I care).

Is counterparty risk an “accelerant” in financial crises?
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Systemic Risk

Distress increases volatility sharply and significantly.

Widens spreads: transactions costs ↑; market liquidity ↓.
Volatility is pushed onto the survivors (externality).

Crisis bankruptcies have real costs:

Virtuous, vicious circles of market and funding liquidity1.
Reduced funding liquidity affects non-financial firms also.
Less invested in risky assets; allocative inefficiency?
Many people unemployed at once; complicates job searches.
Also see a sudden and commensurate drop in tax revenues.

Market structure may magnify problems.

Market fragility estimable with a few metrics of market core.

1Brunnemeier and Pedersen (2009).
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Model: Market Structures

Investigate two extremes of n-counterparty networks.

A NETWORK MODEL OF COUNTERPARTY RISK 3

p1 = price of the risky asset at end of period 1;
σ = volatility per period of the risky asset price;

Ki = capital endowment of counterparty i (Ki > 0);
λi = risk aversion of counterparty i; and,
qij = exposure of counterparty i via contract with counterparty j != i.

Worth noting is that the contract notation implies direction: qij = −qji.

The price impact model is as in Almgren and Chriss (2001). If we assume
price innovations are iid and have mean zero, we get the expected price at
which counterparty i rehedges as a function of the quantity rehedged xi:

E(p(xi)) = p0 + πxi︸︷︷︸
permanent

+ τxi + φ sgn(xi)︸ ︷︷ ︸
temporary

.(1)

Since temporary impact is only incurred by the rehedging counterparty, the
final price p1 has expectation

E(p1) = p0 + π
n−1∑

i=1

xi.(2)

2.2. Network Topologies. Any network topology could be studied; but,
here we consider two extremes: a fully-connected network with n(n − 1)/2
contracts and a star network with n contracts. Examples for four counter-
parties are shown in Figure 1.
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Figure 1. The two network structures considered shown for
n = 4 counterparties: a fully-connected network (left) and a
star network connected via a central counterparty (right).

3. Analysis

With some further assumptions, we can analyze the effect of the initial
bankruptcy for these two network types.

We begin by assuming all investors have the same capital K and the same
risk aversion λ. We also assume contract sizes are distributed normally

as qij
iid∼ N(0, η2). Counterparty i has net exposure of Qi =

∑
j qij . Net

exposures have expectation 0 and variance (n − 1)η2.
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With some further assumptions, we can analyze the effect of the initial
bankruptcy for these two network types.

We begin by assuming all investors have the same capital K and the same
risk aversion λ. We also assume contract sizes are distributed normally

as qij
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Star network Complete network

(Market with CCP2) (Bilateral “OTC” market)

Each node is a counterparty (capital K , risk aversion λ).

Each edge is a contract3 linking counterparties i and j

Contract exposure: qij = −qji ; qi<j
iid∼ N(0, η2)

Counterparty i ’s net exposure: Qi =
∑

j 6=i qij .

Same net exposures (Qi ’s) in both networks.
2Central counterparty.
3A swap or forward on a risky asset.
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Model: Event Timing

To study counterparty risk, events occur at discrete times.

t = 0: Bankruptcy of counterparty n occurs.

All contracts with counterparty n are invalidated.
Pushes unwanted exposure onto other n − 1 counterparties.

t = 1: Living counterparties trade in response to bankruptcy.

t = 2: Living counterparties close out bankruptcy-induced exposure.

Order of trading in a period is random, not strategic.
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Model: Price Impact of Trading

Each counterparty i trades xi shares at time t = 1.

Huberman and Stanzl (2004) arbitrage-free price impact.

Impact has linear permanent component4.
Permanent component impacts prices for later traders.

Trade ordering, price impact create low and high prices.

Time periods are very short; two simplifying assumptions:
1 Prices have no drift other than price impact due to trading.
2 Price diffusion is Gaussian (not log-normal).

Defer handling crisis-related adverse selection.

4Price impact could arise from inventory risk cost, non-crisis
adverse selection.
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Effects of Invalidated Contracts

Suppose counterparty A is net long the market.

⇒ Other counterparties are net short the market.

These are their preferred equilibrium positions.

Thus when counterparty A defaults:

Survivors must re-create exposure from counterparty A.
Survivors become net sellers.

CCP market: only CCP trades; net sell.

OTC market: some counterparties will sell, some will buy.

However, counterparties trade in own interest.

Do they rehedge immediately? Push market further?
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Large Bankruptcy

Consider bankruptcy of a large financial firm.

Assume large market move r0 at t = 0 induces bankruptcy.

Net exposure Qn probably large; estimate via EVT5.

Q̂n =
−K

r0
+

η
√

n − 1

cn(1− e−e−cnκ1−dn )

∞∑

k=1

(−1)k+1e−k(cnκ1+dn)

kk!

(1)
where κ1 = −K

r0η
√
n−1 (minimum exposure causing death),

cn = 1√
2 log(n)

, and dn =
√

2 log(n)− log log(n)+log(16 tan−1(1))

2
√

2 log(n)
.

5Equivalent: endow all counterparties with perfect information,
examine most likely Qn|r0.
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Large Bankruptcies

For large Qn, trading at t = 1, 2 will move market a lot.

Move will be further in direction that caused bankruptcy.

This raises two distressing possibilities:

Contagion: move may cause other counterparties to fail; or,
Checkmate: hedging may bankrupt the hedger.

Counterparties anticipate these, respond selfishly.

For bilateral OTC market, all counterparties may trade.

All anticipate follow-on bankruptcies to hedge Q̂f .
Trouble: ν > 1 (overtrading at t = 1) to be expected.
Longs, shorts may largely self-segregate rehedge timing.

Thus network structure matters.

10 / 19



UIC Liautaud

Introduction Model Large Bankruptcy Conclusion

Large Bankruptcy: Equilibrium CCP Trade

CCP anticipates follow-on bankruptcies; equilibrium yields

Follow-on bankruptcy exposure Q̂f (distress exposure):

Q̂f = (n − 1)3/2η
φ(κ2)− φ(κ1)

Φ(κ1)
where (2)

κ2 =
−Kp0/[η

√
n − 1]

p0r0 − π(Q̂n + Q̂f )
(min exposure for follow-on death).

# follow-on bankruptcies b̂ (distress pervasiveness):

b̂ = (n − 1)

∫ κ1
κ2
φ(z)dz∫ κ1

−∞ φ(z)dz
= (n − 1)

(
1− Φ(κ2)

Φ(κ1)

)
(3)
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Large Bankruptcy: Equilibrium OTC Net Trade

OTC traders anticipate one another, follow-on bankruptcies.

However: those most at-risk rehedge quickly, others delay.

Random trade sequence ⇒ uncertain low of rehedging Sn−1.

Use these to solve for equilibrium OTC net trade.

κ2 =
−Kp0

η
√

n − 1(p0r0 + πE (Sn−1|ν))
, (4)

Q̂f = (n − 1)3/2η
φ(κ2)− φ(κ1)

Φ(κ1)
. (5)

Important to note that ν ≥ 1 (in E (Sn−1)).

Finding ν is hard: n-player (random) game; usually c1.75.
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Bad Behavior? Checkmate and Hunting

Proposition (Checkmate)

A large enough initial bankruptcy may yield a follow-on bankruptcy
in expectation — despite any finite effort by the troubled
counterparty.

Proposition (Hunting)

For a complete network of 3 or more counterparties and a large
enough initial bankruptcy, two or more other counterparties may
profit by driving a survivor into (follow-on) bankruptcy.
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The Other Extreme: A Separating Equilibrium?

Another (extreme) possibility exists in bilateral OTC markets:

Buyers and sellers may separate when they trade.

Those who are same side as net rehedge rush to hedge first.

Those on other side wait to allow maximum distress.

If net rehedge makes sellers panic, net sale in period 1 is:

− E (
n−1∑

i=1

[xi ]
−|

n−1∑

i=1

xi = −Q̂n − Q̂f ) (6)

≈ −(n − 1)3/2ηφ(µ∗)− (Q̂n + Q̂f )(1− Φ(µ∗)) (7)

where µ∗ = Q̂n+Q̂f

(n−1)3/2η (net rehedge in std devs/survivor)

and φ,Φ are standard normal pdf, cdf.

14 / 19



UIC Liautaud

Introduction Model Large Bankruptcy Conclusion

Large Bankruptcies: Indicative Distress

Consider large bankruptcy for n = 10 counterparties6.

Std deviation of bilateral contract exposure η = 1, 000, 000.

Distress exposure Q̂f and pervasiveness b̂ vs. Q̂n.

Q̂
f

b̂

Q̂n Q̂n

Lines: (P)ooled OTC; (S)eparated OTC; (C)CP
P − S : Envelopes of distress exposure, pervasiveness

6Price impact parameters are as in Almgren and Chriss (2001).
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Large Bankruptcies: Example of Market Impact

Suppose Q̂n = 10,000,000; GARCH variance decay of 0.9.

For CCP market:

Expected market impact: −$30.
Effective annual volatility goes from 30% to 38%.

If pooled OTC buyers, sellers overtrade 1.75× at t = 1.

Expected market impact: −$31.
Annual volatility ↑ to 328% (instant.), 146% (effective).

If OTC buyers and sellers separate, at t = 1:

Expected market impact: −$41.
Annual volatility ↑ to 596% (instant.), 268% (effective).
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Large Bankruptcies: Example of Real Effects

Suppose Q̂n = 10 MM, market size of $40 MM7.

If 8% equity premium and mean risk aversion of λ̂ = 3:

Equilibrium allocation to risky asset: 29% (71% cash).
Post-crisis: 19% (CCP), 1.2% (OTC pool), 0.4% (OTC sep).

Cost of distress externality:

$3.2MM (CCP), $123 MM (OTC pool), $425 MM (OTC sep).
Cost of OTC market distress is 3–11× market size.

Given 2–3 bankruptcies; mean employees, compensation:

260,000–400,000 unemployed; $33–$49 billion pay loss.
At 40% total taxes: revenue loss of $13–$20 billion.

7Approximately 2(Q̂n + Q̂f ).
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Large Bankruptcies: Not So Random

Complete networks admit two destabilizing events:

Checkmate: weak counterparty may have no beneficial trade.
Hunting: counterparties force others into bankruptcy.

Worse, hunting is a full equilibrium behavior.

Market may be pushed far beyond one follow-on bankruptcy.

Are counterparties selfishly amoral/evil? Maybe not.

Trade amount may pre-hedge expected follow-on bankruptcies.
This reduces surprise need for trading in period 2.

CCP markets have fewer such destabilizing events.

Suggests central clearing reduces OTC market volatility.
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Conclusion

Even small bankruptcies temporarily increase volatility.

For a large bankruptcy in a bilateral OTC market:

Counterparties may be unable to save themselves (checkmate).
Counterparties may hunt their weakest peers for profit.
Volatility externality (and thus cost) higher than CCP market.

Self-segregating buyers, sellers in OTC markets can be nasty:

Externality distress cost � market size. (market failure?)

Suggests benefits to centralized clearing in OTC markets8.

Volatility externality cost ⇒ when to move markets to CCP.

May be able to measure when markets are more/less brittle.

n, η, K̄ for part of market like complete network.

8Ongoing: Is a CCP capital efficient?
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