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1 Introduction

The development of derivative markets such as forwards, futures or credit default swaps

(CDS) can enhance risk-sharing opportunities. Yet, as noted by Rajan (2006), it can also

induce greater risk-taking. We study this tradeoff in a moral hazard context and show how

it limits the scope for risk-sharing and how it can lead to endogenous counterparty risk. We

analyze how margin deposits align incentives and improve risk-sharing.

Consider a financial institution whose assets (e.g., corporate or real-estate loans) are

exposed to risk. Due to leverage or regulatory constraints, such as risk-weighted capital

requirements, the institution would benefit from hedging its risk. To do so, the financial

institution contacts a protection seller, e.g., an insurance company or another financial in-

stitution, and the two parties design an optimal risk-sharing contract.

Before engaging in that derivative trade, the protection seller already has assets in place.

To reduce the downside risk on her assets, the protection seller must exert effort. For exam-

ple, she must acquire information to screen out bad loans, or she must monitor borrowers.

As in Thompson (2010), we assume there is a moral hazard problem on the side of the pro-

tection seller. More precisely, we assume that, while costly, the risk-prevention effort of the

limited-liability protection seller is not observable.1

Ex-ante, when the protection seller enters the position, the derivative contract is neither

an asset nor a liability. For example, the seller of a credit default swap pays the buyer in

case of credit events (default, restructuring) but collects an insurance premium otherwise,

and on average these costs and benefits offset each other. But, when the protection seller

observes bad news about the underlying asset of the derivative trade, the trade becomes a

liability for her. For example, on observing a strong drop in real estate prices, sellers of

subprime-mortgage CDS anticipate the positions to move against them so that they would

have to make insurance payments.

The liability embedded in the derivative trade undermines the incentives of the protection

seller to exert effort to reduce the downside risk of her other assets.2 Similar to the debt

overhang effect analyzed by Myers (1977), the protection seller bears the full cost of such

1In most of our analysis, the unobservable action of the agent affects the cash–flows in the sense of
first–order stochastic dominance, as in Holmstrom and Tirole (1998) and Tirole (2005). Yet, we show that
qualitatively identical results hold if the unobservable action leads to an increase in risk in the sense of
second–order stochastic dominance, in the spirit of Jensen and Meckling (1976).

2If the balance sheet of the protection seller is not marked to market, it does not reflect this liability.
Regulation should be aware of such hidden liabilities in the derivative positions of financial institutions.
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efforts while part of its benefits accrue to the protection buyer.3 To preserve the seller risk-

prevention incentives, the protection buyer can accept a smaller insurance after bad news to

reduce the liability of the protection seller. Or if such reduced insurance is too costly ex-ante,

the protection buyer may prefer to give up on the seller’s incentives after bad news. By no

longer exerting risk-prevention effort, the seller runs the risk of default.4 When the default

of the protection seller occurs, it generates counterparty risk for the protection buyer.5

Our analysis thus identifies a channel through which derivative trading can propagate risk.

Without moral hazard, the risk exposures of the protection buyer and seller are independent.

Moral hazard can, however, lead to a lack of risk-prevention effort, or risk-taking, and the

default of the seller after bad news about the risk of the protection buyer.6

The optimal hedging contract stipulates the circumstances under which the protection

seller must liquidate a fraction of her risky assets and deposit the resulting cash on a margin

account. The cost of such liquidation is the wedge between what the assets could have

earned under the seller’s effort and the lower risk-free return on cash in a margin deposit.

The benefit is that the cash in the margin account is safe and is no longer under the control of

the protection seller. It is ring-fenced from moral hazard. We show that calling margins after

bad news, i.e., requiring variation margins, relaxes the moral hazard problem and increases

incentive-compatible insurance. The overall effect of margins on risk is, however, ambiguous.

Since margin deposits can be used to pay the protection buyer when the seller defaults, they

reduce the incentives of the buyer to deter the seller’s risk-taking.

We extend the analysis to the case of multiple sellers.7 When the sellers can retrade, fully

transferring risk exposure among themselves, the equilibrium differs from the information

constrained second-best. This offers a rationale for the regulation of retrading among CDS

protection sellers (“novation”) discussed in Duffie et al. (2010).

As mentioned above, our analysis is in line with Thompson (2010) since in both models

there is moral hazard on the part of the protection seller. But Thompson (2010) analyzes

3Note however that instead of exogenous debt as in Myers (1977) our model involves endogenous liabilities
pinned down by optimal contracting.

4Stephens and Thompson (2011) also analyze the risk of insurer default, but in a model with good and
bad insurers.

5For example, Lehman Brothers and Bear Stearns defaulted on their CDS derivative obligations because
of losses incurred on their other investments, in particular sub-prime mortgages.

6This incentive-based theory of propagation differs from the analyses of systemic risk offered by Freixas,
Parigi and Rochet (2000), Cifuentes, Shin and Ferrucci (2005), and Allen and Carletti (2006).

7Stephens and Thompson (2011) also analyze competition among multiple protection sellers. While we
study retrading among protection sellers, they analyze the role of exclusivity and non-exclusivity, respectively.
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the case in which the protection buyer is privately informed about his type and shows that

moral hazard can alleviate this adverse selection problem. In contrast, there is no adverse

selection in our analysis and we identify a different channel through which moral hazard

reduces insurance and generates counterparty risk. Other important contributions to these

issues include Acharya and Bisin (2010), who focus on the contractual externality between

protection buyers and the role of transparent centralized clearing in this context, and Bolton

and Oehmke (2011) who argue that derivatives should not be senior in bankruptcy relative

to other creditors.

The model is presented in the next section. In Section 3, we analyze the benchmark case

in which effort is observable. Then, we turn to optimal contracting under moral hazard.

To highlight the basic trade-off between risk-sharing and risk-taking, we first abstract from

margins in Section 4. In Section 5, we analyze the optimal contract with margins. In Section

6, we analyze the case of multiple protection sellers. Section 7 concludes. Proofs are in the

Appendix.

2 The model

There are three dates, t = 0, 1, 2, and two agents, the protection buyer and the protection

seller, who can enter a risk-sharing contract at t = 0.

Players and assets: The protection buyer is risk-averse with twice differentiable con-

cave utility function, denoted by u. At t = 0 he is endowed with illiquid risky assets with

random return θ̃ realized at t = 2. For simplicity, we assume that θ̃ can take on two values:

θ̄ with probability π and θ with probability 1 − π. The protection buyer seeks insurance

against the risk θ̃. The protection seller is risk-neutral. At time t = 0 she has an amount

A > 0 of assets in place that have an uncertain per unit return R̃ at t = 2. To the extent

that R̃ is random the balance sheet of the protection seller is risky.

The protection buyer could be a commercial bank seeking to hedge the credit risk of its

industrial or real estate loan portfolio.8 The protection seller could be an investment bank

or an insurance company.9

8Concavity of the objective function of the protection buyer can reflect institutional, financial or regulatory
constraints, such as leverage constraints or risk–weighted capital requirements. For an explicit modeling of
hedging motives see Froot, Scharfstein and Stein (1993) and Froot and Stein (1998).

9A prominent example is AIG. 72% of the CDS it had sold by December 2007 were used by banks for
capital relief (European Central Bank, 2009).
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At t = 1 the protection seller makes unobservable decisions affecting the riskiness of

her assets. To capture the moral hazard problem in the simplest possible way, we follow

Holmstrom and Tirole (1998) and Tirole (2005), and assume she can choose between effort,

e = 1, and no effort, e = 0. Exerting effort is unobservable and leads to an improvement

in R̃ in the sense of first order stochastic dominance. We assume that in this case the

return realized at time 2 is deterministic and equal to AR. Alternatively, if the protection

seller shirks and does not exert effort, this exposes her investments to downside risk, and

the return on her assets is equal to AR with probability p and 0 with probability 1 − p.

Shirking, however, gives the protection seller a private benefit B per unit of assets on her

balance sheet. Equivalently, the private benefit of shirking can be interpreted as the cost of

effort. The protection seller has limited liability. When her assets yield 0, she cannot make

any payment promised to the protection buyer, who is therefore exposed to counterparty

risk. This environment is meant to capture the essence of controlling risk in a financial

institution. When exerting effort, the protection seller spends resources to carefully monitor

her investments and thus avoid a large risk of default. When she shirks on effort, e.g.,

by relying on easily available but superficial information such as ready-made ratings, she

exposes herself to the risk of default. Hence, we refer to shirking also as risk-taking.

We normalize the discount factor to one and assume that

R > 1 and R > pR +B.

The first inequality implies that under effort the assets of the protection seller are a positive

NPV project. The second one implies that shirking destroys value. Hence, if the protection

seller does not enter into a contract with the buyer and is solely concerned with managing

her assets, she prefers to exert effort. Finally note that for a given level of effort, R̃ and θ̃

are independent.

Advance information: A public signal s̃ about θ̃ is observed at t = 0.5, before the

seller makes her effort decision at t = 1. For example, when θ̃ is the value of a real estate loan

portfolio held by the protection buyer, s̃ is the value of a real estate index or an indicator of

default risk for these assets. Denote

λ = prob[s̄|θ̄] = prob[s|θ].
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The probability π is updated to π̄ upon observing s̄ and to π upon observing s, where, by

Bayes’ law,

π̄ = prob[θ̄|s̄] =
λπ

λπ + (1− λ)(1− π)
and π = prob[θ̄|s] =

(1− λ)π

(1− λ)π + λ(1− π)
.

We assume that λ ≥ 1
2
. If λ = 1

2
, then π̄ = π = π and the signal is completely

uninformative. If λ > 1
2
, then π̄ > π > π, i.e., observing s̄ increases the probability of θ̄

(good signal) whereas observing s decreases the probability of θ̄ (bad signal). If λ = 1, then

the signal is perfectly informative.

Margins: The protection seller can liquidate a fraction α of her assets and deposit the

resulting cash on a margin account. The cost of such deposits is that their value at time 2,

αA, is lower than what it could have been had the assets remained under the management

of the protection seller, αAR.

Yet margins also have advantages. Our key assumption is that the cash deposited in the

margin account is safe and no longer under the discretion of the protection seller, i.e., it is

ring-fenced from moral hazard. Furthermore, if the protection seller defaults, the cash on

the margin account can be used to pay the protection buyer.

Margin accounts can be implemented as escrow accounts set up by the protection buyer

or via a market infrastructure such as a central counterparty (CCP). Importantly, we assume

that margin deposits are observable and contractible, and that contractual provisions calling

for margin deposits are enforceable. It is one of the roles of market infrastructures to ensure

such contractibility and enforceability.

We will consider two types of margins. An initial margin is a requirement to deposit

cash at t = 0 when the protection buyer and seller enter a risk-sharing contract. A variation

margin is a requirement to deposit cash at t = 0.5 after advance information about the risk

θ is observed.

Contract: The contract specifies a transfer τ at time 2 between the protection seller

and the protection buyer.10 When τ > 0 the protection seller pays the protection buyer and

vice versa when τ < 0. The transfer τ can be conditional on all observable information:

the realization of the risk θ̃, the return on the seller’s assets R̃ and the advance signal s̃.

10In our simple framework, allowing for an upfront payment by the protection buyer at t = 0 would not
change the analysis.
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Hence, transfers are denoted by τ(θ̃, s̃, R̃). The contract also specifies margin requirements.

Transfers must be consistent with the limited liability of the protection seller, so that αA+

(1 − α)AR̃ ≥ τ(θ̃, s̃, R̃). We assume A ≥ π∆θ, where ∆θ ≡ θ̄ − θ. As we will show below,

this implies that the limited liability constraint binds only if R̃ = 0.

The sequence of events is summarized in Figure 1.

Insert Figure 1 here

3 First-best: observable effort

In this section we consider the case in which the protection buyer can observe the seller’s

risk-prevention effort so that there is no moral hazard and the first-best is achieved. While

implausible, this case offers a benchmark against which we will identify the inefficiencies

generated by moral hazard.

In the first-best, efficiency requires that the protection seller exerts effort and that margins

are not used. Their benefit is to ring-fence assets from the seller’s moral hazard problem,

which is absent in the first-best. Since the return R̃ is always equal to R, we don’t need to

write R̃ among the variables upon which τ is contingent.

The protection buyer solves

max
τ

πλu(θ̄ + τ(θ̄, s̄)) + (1− π)(1− λ)u(θ + τ(θ, s̄)) (1)

+ π(1− λ)u(θ̄ + τ(θ̄, s)) + (1− π)λu(θ + τ(θ, s))

subject to the protection seller’s participation constraint

πλ[AR− τ(θ̄, s̄)] + π(1− λ)[AR− τ(θ̄, s)]

+ (1− π)λ[AR− τ(θ, s)] + (1− π)(1− λ)[AR− τ(θ, s̄)] ≥ AR

The expression on the right-hand side of the participation constraint is the protection seller’s

payoff if she does not enter the transaction, in which case she exerts effort. The participation

constraint simplifies to

0 ≥ E[τ(θ̃, s̃)] (2)

Condition (2) states that the protection seller agrees to the contract as long as the average

payment to the buyer is non-positive. Proposition 1 states the first-best outcome.
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Proposition 1 (First-best contract) When effort is observable, the optimal contract en-

tails effort, provides full insurance and is actuarially fair. Margins are not used. The trans-

fers are given by

τFB(θ̄, s̄) = τFB(θ̄, s) = −(1− π)∆θ = E[θ̃]− θ̄ < 0

τFB(θ, s̄) = τFB(θ, s) = π∆θ = E[θ̃]− θ > 0

In the first-best contract, there is no counterparty risk and the consumption of the pro-

tection buyer is equalized across states. The contract does not react to the signal. Expected

transfers are zero and there are no rents to the protection seller. The payments are propor-

tional to the riskiness of the position, measured by ∆θ and under our assumption A > π∆θ,

the limited liability constraint does not bind.

4 Unobservable effort, no margins

We hereafter assume that the seller’s risk-prevention effort is not observable. In this section

we characterize the optimal contract assuming that margins are not used, i.e., α = 0. This

provides a useful benchmark against which we assess the effect of margins in section 5.

4.1 Effort after both signals

We first consider a contract that induces effort after both a good and a bad signal. On the

equilibrium path R̃ = R, so that transfers only need to be contingent on the risk θ̃ and the

signal s̃. The protection buyer solves (1) subject to (2) as well as now the seller’s incentive

compatibility constraints. Since the signal about the risk θ̃ is observed before the effort

decision is made, the incentive constraints are conditional on the realization of the signal.

In case of a good signal, s̃ = s̄, the incentive-compatibility constraint is given by

π̄[AR− τ(θ̄, s̄)] + (1− π̄)[AR− τ(θ, s̄)] ≥

π̄[p(AR− τ(θ̄, s̄))] + (1− π̄)[p(AR− τ(θ, s̄))] + AB

The expression on the right-hand side is the protection seller’s (out-of-equilibrium) expected

payoff if she does not exert effort. With probability 1 − p, her assets return zero and she

cannot make any positive payment. The protection buyer, in turn, has no interest in making

a payment to the protection seller when R̃ = 0, since it would only make it more difficult
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to satisfy the incentive constraint. The incentive-compatibility constraint after a bad signal,

s̃ = s, is derived analogously. Simplifying the incentive constraints we get:

AP ≥ π̄τ(θ̄, s̄) + (1− π̄)τ(θ, s̄) and AP ≥ πτ(θ̄, s) + (1− π)τ(θ, s),

where

P ≡ R− B

1− p
. (3)

Following Tirole (2005), we refer to P as the “pledgeable income” of the protection

seller, i.e., the share of the return per unit of assets that can be pledged to an outside

investor without jeopardizing the incentives of the agent managing the assets. Note that

P > 0 under our assumption that effort is efficient, i.e., R > pR +B. Denoting:

τ̄ ≡ E(τ |s̄) (4)

τ ≡ E(τ |s), (5)

the incentive constraints become

AP ≥ τ̄ (6)

AP ≥ τ (7)

and the participation constraint (2) becomes

0 ≥ prob[s̄]τ̄ + prob[s]τ (8)

For sufficiently high levels of P , the incentive-compatibility constraints are not binding at

the first-best allocation. This leads to the following lemma.

Lemma 1 When effort is not observable, the first-best can be achieved if and only if the

pledgeable income is high enough, in the sense that

AP ≥ (π − π)∆θ = E[θ̃]− E[θ̃|s].

The threshold level of pledgeable income beyond which the first-best is attainable is

increasing in the riskiness of the position ∆θ and the informativeness of the signal λ. Thus,

Lemma 1 yields the following corollary.

Corollary 1 When the signal is uninformative, λ = 1
2
, the first-best is always reached since

AP > (π − π)∆θ = 0.
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In what follows, we focus on the case in which the first-best is not attainable and, more-

over, the signal is sufficiently informative. In particular, we assume that:

λ ≥ λ∗ ≡
1−√p
1− p

>
1

2
. (9)

While relatively mild,11 this assumption simplifies the analysis by focusing on the case in

which the moral hazard problem is relatively severe.

The next lemma states that the participation constraint of the protection seller binds

and the contract is actuarially fair.

Lemma 2 When the optimal contract induces the seller’s effort after both signals, her par-

ticipation constraint is binding, E(τ) = 0.

To ensure that the protection seller always exerts effort, both incentive-compatibility

constraints (6) and (7) must hold. But the next lemma states that only the incentive

constraint after a bad signal is binding.

Lemma 3 When the optimal contract induces the seller’s effort after both signals, the in-

centive constraint after a good signal is slack whereas the incentive constraint after a bad

signal is binding.

Ex-ante, before the signal is observed, the derivative position is neither an asset nor a

liability for the protection seller. After observing a good signal about the underlying risk,

the position is likely to be profitable for the seller. She is more likely to be paid by the

buyer than the other way around, which strengthens the attractiveness of risk-prevention

effort to stay solvent. Good news do not generate an incentive problem. Negative news,

however, make it likely that the position moves against the seller. This undermines the

seller’s incentives to exert effort. She has to bear the full cost of effort while the benefit of

staying solvent accrues in part to the protection buyer who gets paid. This is reminiscent of

the debt-overhang effect (Myers, 1977).

Building on the above analysis, the following proposition characterizes the optimal con-

tract with effort after both signals.

Proposition 2 (Optimal contract with effort) The optimal contract that induces effort

after both signals has the following characteristics:

11Note that λ∗(p) is decreasing in p with λ∗ → 1
2 as p → 1. For reasonable values of p, the threshold λ∗

is close to one half. For example, λ∗ = 0.59 when p = 1
2 .
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• Full insurance conditional on the signal: For a given realization of the signal, the

consumption of the protection buyer at time 2 is independent of the realization of θ.

• Transfers:

τ(θ̄, s̄) = −(1− π̄)∆θ − prob[s]

prob[s̄]
AP < 0

τ(θ, s̄) = π̄∆θ − prob[s]

prob[s̄]
AP > 0

τ(θ̄, s) = −(1− π)∆θ + AP < 0

τ(θ, s) = π∆θ + AP > 0

The key difference to the first-best contract is that the transfers now depend on the

signal. To preserve the seller’s incentives to exert effort, the buyer must reduce the amount

of insurance after a bad signal, τ(θ, s) < τ(θ, s̄), and thus accept incomplete risk-sharing.

Hence, the protection buyer bears signal risk. Correspondingly, the protection seller must

be left with some rent after a bad signal in order to exert effort. The protection buyer

“reclaims” this rent after a good signal, τ(θ̄, s) < τ(θ̄, s̄), so that the expected rent to the

seller is zero.

Conditional on the signal, the optimal contract provides full insurance against the un-

derlying risk θ̃:

τ(θ, s̄)− τ(θ̄, s̄) = τ(θ, s)− τ(θ̄, s) = ∆θ > 0 (10)

Since there is full insurance conditional on the signal, we can rewrite the objective of the

risk-averse protection buyer (1) as

prob[s̄]u(E[θ|s̄] + τ̄) + prob[s]u(E[θ|s] + τ) (11)

where τ̄ and τ are as defined in (4) and (5).

Figure 2 illustrates our results so far in the contract space (τ , τ̄). Since the incentive

constraint after bad news binds, τ = AP > 0, and at the same time E(τ) = 0, we have

τ < 0. Hence, the relevant part of the contract space is when τ ≥ 0 (x-axis) and τ ≤ 0

(y-axis). After a bad signal the protection seller is more likely to pay the protection buyer

than vice versa. The opposite holds after a good signal.

Insert Figure 2 here
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The participation constraint of the protection seller (8) is a line through the origin with

slope −prob[s]
prob[s̄]

. The protection seller agrees to any contract that lies on or below this line.

Contracts that lie on the line are actuarially fair since expected transfers are zero. The slope

gives the “relative price” at which the risk-neutral protection seller is willing to exchange

expected transfers after a good and a bad signal.

The indifference curves corresponding to (11) are decreasing, convex curves in the contract

space (τ , τ̄).12 The utility of the protection buyer increases as he moves to the north-east in

the figure.

The first-best allocation is given by point A where the indifference curve of the protection

buyer is tangent to the participation constraint of the protection seller. Point B illustrates

the optimal contract with unobservable effort. The vertical line that intersects the x-axis

at τ = AP represents the incentive constraint after a bad signal. The protection seller only

exerts effort after a bad signal if the contract lies on or to the left of the line. The figure is

drawn for AP < E[θ̃]− E[θ̃|s] so that the first-best allocation is not attainable when effort

is not observable (Lemma 1). The contract achieving the highest utility for the protection

buyer lies at the intersection of the incentive and the participation constraint. He is worse

off than with the first-best allocation. The indifference curve passing through B lies strictly

below the one passing through A.

4.2 No effort after a bad signal (risk-taking)

The protection buyer may find the reduced risk-sharing in the contract with effort after bad

news too costly. He may instead choose to accept shirking on risk-prevention effort (risk-

taking) by the protection seller in exchange for a better sharing of the risk associated with θ̃.

In this subsection, we characterize the optimal contract with risk-taking by the seller after

a bad signal.

As before, the protection seller’s incentives to exert effort are intact after good news so

that R̃ = R. After bad news, the seller now does not exert effort so that R̃ = R with

probability p and R̃ = 0 with probability 1− p. Hence, the contractual transfer τ must now

12The slope of an indifference curve is given by dτ̄
dτ = −prob[s]u′

prob[s̄]ū′ < 0, where u′ ≡ u′(E[θ|s] + τ) and

ū′ ≡ u′(E[θ|s̄] + τ̄). The change in the slope is d2τ̄
dτ2 = − prob[s]u′′ū′

(prob[s̄]ū′)2 > 0.
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be contingent on the realization of R̃. The objective of the protection buyer is given by

max
τ

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(θ + τ(θ, s̄, R)) (12)

+ π(1− λ)[pu(θ̄ + τ(θ̄, s, R)) + (1− p)u(θ̄ + τ(θ̄, s, 0))]

+ (1− π)λ[pu(θ + τ(θ, s, R)) + (1− p)u(θ)]

With probability 1− p the seller’s assets return zero and she cannot make any transfers

to the protection buyer. It may, however, be optimal for the buyer to make a transfer to

the seller when she defaults but the good state θ̄ is realized, i.e., it may be optimal to set

τ(θ̄, s, 0) < 0. In contrast, the transfer when the seller defaults and the bad state θ is realized

is optimally set to zero, τ(θ, s, 0) = 0. Indeed, the protection buyer would like to receive

an insurance payment in the bad state θ, but when R̃ = 0 the protection seller is unable to

make any payment.

The seller’s incentive constraint after good news is, as before,

AP ≥ π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R), (13)

whereas after bad news, the seller must prefer not to exert effort

π[AR− τ(θ̄, s)] + (1− π)[AR− τ(θ, s)] ≤

π[p(AR− τ(θ̄, s̄))− (1− p) τ(θ̄, s, 0)] + (1− π)[p(AR− τ(θ, s̄))] + AB,

or, equivalently,

AP ≤ πτ(θ̄, s, R) + (1− π)τ(θ, s, R)− πτ(θ̄, s, 0). (14)

The seller’s participation constraint with risk-taking is

− prob[s](1− p)AP ≥ prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+ (15)

prob[s]p
[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
+ prob[s] (1− p) πτ(θ̄, s, 0)

The expected transfer from the seller to the buyer (right-hand side) is negative. If the seller

enters the position, she must be compensated for the potential efficiency loss due to the

lack of effort after bad news (left-hand side). Thus, the contract with no effort after bad

news is actuarially unfair. The higher the pledgeable income, the greater is the efficiency loss

generated by risk-taking after bad news and the more actuarially unfair is the contract. The

participation constraint (15) implies that apparently expensive derivative contracts sold by

well established institutions (high P) can be an indication of future risk-taking.

Building on the above analysis, we obtain our next proposition.
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Proposition 3 (Optimal contract with risk-taking) If risk-taking (no effort) is pre-

ferred to effort after bad news, then the optimal contract provides full insurance except when

the seller defaults in the θ state. The transfers are given by τ(θ, s, 0) = 0 and

τ(θ̄, s̄, R) = τ(θ̄, s, R) = τ(θ̄, s, 0) =
π∆θ − prob[s] (1− p)AP
1− prob[s] (1− π) (1− p)

−∆θ < 0

τ(θ, s̄, R) = τ(θ, s, R) =
π∆θ − prob[s] (1− p)AP
1− prob[s] (1− π) (1− p)

> 0

While the contract is actuarially unfair, there are no rents to the protection seller since

the participation constraint is binding. The seller pays the buyer in the bad state θ̃ = θ if

she does not default and vice versa in the good state θ̃ = θ̄: τ(θ, s̃, R) > 0 > τ(θ̄, s̃, R̃). In

contrast to the contract when the seller does exert effort after bad news, the contract without

such effort does not react to the signal, i.e., τ(θ̃, s̄) = τ(θ̃, s). Except when the protection

seller defaults and the bad state θ occurs, the consumption of the buyer is equalized across

states (as in the first-best contract). But when the protection seller defaults and θ occurs,

the buyer cannot receive any insurance payment and is therefore exposed to counterparty

risk.

4.3 Risk-sharing and risk-taking

The contract under which the protection seller exerts effort after both signals entails limited

risk-sharing for the buyer but has no risk-taking by the seller (Section 4.1), while the contract

with no effort after a bad signal entails full risk-sharing for the protection buyer unless

the seller defaults due to risk-taking (Section 4.2). The next proposition characterizes the

privately optimal choice between the two contracts.

Proposition 4 (Endogenous counterparty risk) There exists a threshold level of per-

unit pledgeable income P̂ such that the contract with risk-prevention effort after a bad signal

is optimal if and only if P ≥ P̂. If the probability of default 1− p is sufficiently small, then

P̂ > 0.

The key factor in the choice is whether signal risk or counterparty risk is more costly

for the protection buyer. For low levels of pledgeable income, the moral hazard is severe.

Maintaining the seller’s incentives after a bad signal requires a considerable reduction in

insurance. The buyer then has to bear a lot of signal risk. If at the same time default is

unlikely (p is high), then it is optimal to allow the seller to shirk on the risk-prevention

13



effort at the cost of counterparty risk. The proposition also implies that risk-taking by the

protection seller is more likely when the return on her asset (R) is low.

4.4 Risk-taking or risk-shifting?

So far, we modeled moral hazard in terms of an effort to increase returns in the sense of

first-order stochastic dominance. In this subsection, we show that the problem is equivalent

when we consider an unobservable action that worsens returns in the sense of second-order

stochastic dominance. Such an alternative formulation of moral hazard is in line with the

risk-shifting problem identified by Jensen and Meckling (1976).

Assume the per-unit return on the protection seller’s balance sheet, R̃, can be high (H),

medium (M), or low (L), with H > M > L. For simplicity, normalize L to 0. As in Biais and

Casamatta (1999), the protection seller makes an unobservable choice about the probability

distribution over H, L and M . She can choose a relatively safe distribution for which the

return is H with probability 1−µ and M with probability µ. Denote the expected return in

this case by E [R]. Alternatively, she can choose a riskier distribution, i.e., engage in risk-

shifting, where the return is H with probability 1− µ+ α, M with probability µ− (α + β),

and L with probability β. Denote the expected return in this case by Ê [R]. We assume

that E [R] > Ê [R], i.e., that the expected return is lower with risk-shifting than without.

Unlike in the moral hazard problem analyzed previously, there is no private benefit. Yet,

the protection seller can be tempted to engage in risk-shifting.

As before, the hedging contract between the protection seller and the protection buyer

specifies the transfers as a function of the realizations of s̃, R̃ and θ̃. If the contract entails

no risk-shifting by the protection seller, her participation constraint is given by

AE [R]− [prob[s̄]τ̄ + prob[s]τ ] ≥ AE [R] ,

where τ̄ and τ are as defined in (4) and (5). Equivalently, the participation constraint can

be written as prob[s̄]τ̄+prob[s]τ ≤ 0, which is identical to (8).

The incentive constraints of the protection seller now ensure no risk-shifting. Assuming

that the return M is large enough for the protection seller to not default when M occurs, we

have the following two incentive constraints:

(1− µ) (AH − τ̄) + µ (AM − τ̄) ≥ (1− µ+ α) (AH − τ̄) + (µ− (α + β)) (AM − τ̄) ,

(1− µ) (AH − τ) + µ (AM − τ) ≥ (1− µ+ α) (AH − τ) + (µ− (α + β)) (AM − τ) .

14



The incentive constraints simplify to

AP̄ ≥ τ̄ (16)

AP̄ ≥ τ (17)

where

P̄ ≡ −
[
α

β
(H −M)−M

]
. (18)

The pledgeable return P̄ of risk-shifting is the counterpart of P in the case of risk-prevention

effort. Both are given by the difference in expected returns under the efficient and the

inefficient action, divided by the probability of default under the inefficient action (β here

and (1− p) before). The incentive constraints (16) and (17) are similar to (6) and (7).

The objective of the protection buyer (1) is unchanged since the limited liability constraint

of the protection seller does not bind when she does not engage in risk-shifting and since

optimal transfers do not depend on whether the return H or M realizes. Hence, the optimal

contract without risk-shifting is the same as the one characterized in Subsection 4.1, up to a

re-definition of the pledgeable income from P to P̄ . All the qualitative effects are the same,

which implies that our economic message is robust to the specification of the moral hazard,

whether in terms of first- or second-order stochastic dominance.

Consider now the contract with risk-shifting by the protection seller after bad news. The

objective of the protection buyer is given by

max
τ

πλu(θ̄ + τ(θ̄, s̄, H or M)) + (1− π)(1− λ)u(θ + τ(θ, s̄, H or M)) (19)

+ π(1− λ)[(1− β)u(θ̄ + τ(θ̄, s,H or M)) + βu(θ̄ + τ(θ̄, s, 0))]

+ (1− π)λ[(1− β)u(θ + τ(θ, s,H or M)) + βu(θ)],

The objective is similar to (12), with p replaced by (1− β). The participation constraint of

the protection seller under risk-shifting is

− prob[s]βAP̄ ≥ prob[s̄]
[
π̄τ(θ̄, s̄, R̃) + (1− π̄)τ(θ, s̄, R̃)

]
+ (20)

prob[s] (1− β)
[
πτ(θ̄, s, R̃ ≥M) + (1− π)τ(θ, s, R̃ ≥M)

]
+ prob[s]βπτ(θ̄, s, 0),

which is similar to the one without risk-prevention effort, (15). As for the incentive con-

straints, we know from Section 4.2 that they do not bind when the contract without risk-

prevention effort is optimal. Hence, there is no need to consider them explicitly. We conclude

that the problem with risk-shifting after bad news is isomorphic to the problem without ef-

fort, or risk-taking, after bad news.
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5 Margins

We now turn to the case in which margins can be used. In the case of the contract with

effort after bad news and limited risk-sharing for the protection buyer, we show how margins

improve incentives. In the case of the contract without effort after bad news and counterparty

risk, we examine the role of margins in providing insurance against the protection seller’s

default.

5.1 Margins under effort

When the protection seller exerts effort, she always obtains the return R and can always

pay the transfer τ . Margins need not be used to pay the protection buyer at t = 2. The

objective of the protection buyer is unchanged and is given by (1) or, equivalently, by (11).

Furthermore, the incentive constraint of the protection seller does not bind after a good

signal. Calling a margin would only incur the inefficiency of liquidating assets without any

benefit for incentives. Hence, the protection buyer will not make a margin call after a good

signal. Hence, it is also not optimal to make a margin call before the signal realizes. But

to maintain the protection seller’s incentives after a bad signal, the protection buyer may

request the seller to liquidate a fraction α of her assets and deposit the resulting cash on a

margin account. Calling the margin conditional on the bad signal means it is a variation

margin.

The seller’s participation constraint now is

prob[s̄]AR + prob[s] [αA+ (1− α)AR]− E[τ ] ≥ AR

or, equivalently,

E[τ ] ≤ −αA (R− 1) prob[s] (21)

The expression on the right-hand side is negative and represents the protection seller’s ex-

pected opportunity cost of liquidating assets after a bad signal. She forgoes the net return

of assets over cash, R− 1. To offset the opportunity cost of the variation margin and make

the seller willing to enter the contract, the expected transfer to the protection buyer must

be negative, i.e., the contract is actuarially unfair.

The incentive-compatibility constraint after a bad signal now is

αA+ (1− α)AR− τ ≥ p [αA+ (1− α)AR− τ ] + (1− α)AB
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The expression on the right-hand side is the protection seller’s (out-of-equilibrium) expected

payoff if she does not exert effort. She earns the private benefit B only on the assets she has

not had to liquidate. There is no private benefit associated with cash deposited on a margin

account. Higher margins thus reduce the private benefit of shirking on risk-prevention effort.

When the seller’s assets return zero (on the out-of-equilibrium path), the cash deposited is

used to pay the buyer.13 We can rewrite the incentive constraint as

αA+ (1− α)AP ≥ τ (22)

where P denotes, as before, the pledgeable income per unit of assets. Relying on standard

arguments, one can show that (21) and (22) must bind in the optimal contract, as stated in

the following lemma.

Lemma 4 In the optimal contract with margins and effort, the participation constraint of

the protection seller, as well as the incentive-compatibility constraint after bad news, are

binding.

As can be seen in (22), margins tighten the incentive constraint when P ≥ 1. Since they

also tighten the participation constraint, they are then suboptimal. This yields the following

lemma:

Lemma 5 If P ≥ 1, margins are not used.

We therefore turn to the case when margins can be optimal, P < 1. Using Lemma 4 we

obtain the expected transfers conditional on the signal:

τ (α) = αA+ (1− α)AP , (23)

and

τ̄ (α) = −prob[s]

prob[s̄]
[αAR + (1− α)AP ] . (24)

Equation (23) implies that ∂τ
∂α

> 0. By reducing the amount of assets subject to moral

hazard, margins relax the incentive constraint and increase the expected transfer to the

protection buyer after a bad signal. Equation (24) implies that ∂τ̄
∂α

< 0. Margins impose

13In the contract with effort, it is optimal for the buyer to seize the margin whenever the seller is in default
both in the θ and the θ̄ state. This is because returning the margin would tighten the incentive constraint.
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an opportunity cost on the protection seller who requests a higher expected transfer after a

good signal to offset this cost.

To quantify the effect of a margin α, it is useful to introduce the function ϕ, defined as

follows

ϕ (α) ≡ u′(E[θ|s] + τ(α))

u′(E[θ|s̄] + τ̄(α))
.

Given (23) and (24), ϕ is a known function of exogenous variables and α. It is the ratio of the

marginal utility of the protection buyer after a bad and a good signal. In the first-best, there

is full insurance and ϕ is equal to 1. With moral hazard, insurance can be imperfect and ϕ

can be greater than one. Since ∂τ̄
∂α
< 0 and ∂τ

∂α
> 0, ϕ is decreasing. Higher margins reduce

ϕ, moving the expected transfers closer to full insurance. The margin improves risk-sharing

even though it actually is never transferred from the protection seller to the buyer.

The following proposition characterizes the optimal contract with margins and effort

when P < 1.

Proposition 5 (Optimal margins with effort) Consider the case P < 1. If ϕ (0) <

1 + R−1
1−P , then it is optimal not to use margins. If ϕ (1) > 1 + R−1

1−P , then the optimal margin

is α∗ = 1. Otherwise, there exists an optimal margin, α∗ ∈ (0, 1) such that

ϕ(α∗) = 1 +
R− 1

1− P
. (25)

The optimal margin balances inefficient liquidation and enhanced insurance. The right-

hand side of (25) gives the rate at which this tradeoff occurs. The numerator of the fraction,

R− 1, is the opportunity cost of liquidation. The denominator measures the severity of the

incentive problem that limits insurance. Margins can relax the incentive problem (22) only

for P < 1, and they are particularly beneficial when the pledgeable income, P , is low.

Figure 3 illustrates the analysis of margins when the optimal contract entails effort by

the protection seller after a bad signal. The margin affects the participation constraint

and the incentive constraint after a bad signal but leaves the objective function of the

protection buyer unchanged. The straight line from point B to point D illustrates how the

margin changes the set of feasible contracts. The line is the parametric plot of the binding

participation constraint (21) and incentive constraint after bad news (22) as α varies from

0 to 1. The point B represents the optimal contract with effort and no margin (see Section

4.1). The optimal margin α∗ is given by the point of tangency of the protection buyer’s
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indifference curve to the line BD (point E).14

Insert Figure 3 here

5.2 Margins under risk-taking after a bad signal

When the protection seller does not exert effort after a bad signal and thus engages in

risk-taking, the objective of the protection buyer is

max
α,τ

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(θ + τ(θ, s̄, R)) (26)

+ π(1− λ)[pu(θ̄ + τ(θ̄, s, R)) + (1− p)u(θ̄ + τ(θ̄, s, 0))]

+ (1− π)λ[pu(θ + τ(θ, s, R)) + (1− p)u(θ + τ(θ, s, 0))]

where τ(θ̃, s, 0) ≤ αA. The margin allows to pay the protection buyer τ(θ̃, s, 0) when the

protection seller defaults up to the amount that was deposited on the margin account.

The participation constraint of the protection seller is now given by

−prob[s] [αA (R− 1) + (1− p)(1− α)AP ] ≥ prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
(27)

+prob[s]p
[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
+ prob[s] (1− p)

(
πτ(θ̄, s, 0) + (1− π)τ(θ, s, 0)

)
The left-hand side is the sum of the protection seller’s opportunity cost of depositing a margin

and the loss of pledgeable income when she defaults. The right-hand side is the expected

transfer from the protection seller to the protection buyer. The incentive constraint after

bad news is

(1− α)AP ≤ πτ(θ̄, s, R) + (1− π)τ(θ, s, R)− πτ(θ̄, s, 0)− (1− π)τ(θ, s, 0). (28)

As before, the protection seller does not obtain rents:

Lemma 6 In the optimal contract with margins and risk-taking after bad news, the partici-

pation constraint of the protection seller binds.

The next lemma narrows down the parameter space for which risk-taking after bad news

can be optimal:

14At the point of tangency, we have −prob[s]
prob[s̄]ϕ (α∗) = −prob[s]

prob[s̄] −
(R−1)prob[s]
(1−P)prob[s̄] . Multiplying both sides of the

equality with −prob[s̄]
prob[s] recovers condition (25).
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Lemma 7 If pR+B < 1, then α∗ = 1 in the contract with risk-taking after bad news. This

contract is, however, weakly dominated by the one with effort bad news.

Without effort after a bad signal, the expected per-unit return on the seller’s balance

sheet including the private benefit is pR+B. If pR+B < 1, this is lower than the return on

cash. Hence, it is more profitable to deposit all of the protection seller’s assets in the margin

account, α = 1, where they earn a greater return and are ring-fenced from moral hazard.

But the protection buyer can do at least as well by requesting effort after bad news since,

there too, α = 1 can be selected. It follows that the contract with margins and no effort

after bad news can only be strictly optimal if pR +B ≥ 1.

The next lemma characterizes the optimal transfers without effort after bad news when

margins can be used.

Lemma 8 If risk-taking is preferred to effort after bad news, then the incentive compatibility

condition after bad news is slack. The optimal contract provides full insurance except when

the seller defaults in the state θ. The transfers are given by τ(θ, s̄, R) = τ(θ, s, R) and

τ(θ̄, s̄, R) = τ(θ̄, s, R) = τ(θ̄, s, 0) = τ(θ, s, R)−∆θ where

τ(θ, s, R) =
π∆θ − prob[s] (1− p)AP
1− prob[s] (1− π) (1− p)

− αAprob[s] [pR +B − 1 + (1− π) (1− p)]
1− prob[s] (1− π) (1− p)

(29)

and

τ(θ, s, 0) = αA.

When risk-taking by the protection seller is preferred after bad news, then the incentive

compatibility constraints are not binding and the insurance of the protection buyer is only

limited by the default of the protection seller. The usefulness of margins is that they insure

the protection buyer against such default by paying τ(θ, s, 0) to the protection buyer. Since

margins entail an opportunity cost of liquidation, there is no point in depositing more in the

margin account than what is needed to insure against the counterparty risk, τ(θ, s, 0).

Similar to before, define

φ (α) ≡ u′(θ + τ(θ, s, 0))

u′(θ + τ(θ, s, R))
,

which is the ratio of the marginal utility of the protection buyer in the state θ when the

protection seller defaults and when she does not default. The following proposition completes

the characterization of the optimal contract with margins when the protection seller does

not exert risk-prevention effort after bad news.
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Proposition 6 (Optimal margins with risk-taking) If φ (0) < 1 + pR+B−1
(1−p)(1−π)

, then it is

optimal not to use margins. If φ (1) > 1 + pR+B−1
(1−p)(1−π)

, then risk-taking after a bad signal is

not optimal. Otherwise, there exists an optimal margin α∗ ∈ (0, 1) such that

φ (α∗) = 1 +
pR +B − 1

(1− p) (1− π)
(30)

The ratio of marginal utilities φ is a known function of exogenous variables and the

margin α. Lemma 8 implies that φ is decreasing in α. Margins reduce the wedge between

the protection buyer’s marginal utility when the seller defaults and when she does not.

Hence, margins insure against counterparty risk. Similar to Proposition 5, the right-hand

side of (30) gives the rate at which an optimal margin trades off inefficient liquidation and

enhanced insurance, this time against counterparty risk.

When the contract entails risk-prevention effort by the seller, the margin helps to maintain

her incentives after a bad signal. When the contract entails risk-taking, the margin protects

the protection buyer against the default of the seller. The choice between the two contracts

depends again on whether counterparty or signal risk is costlier for the protection buyer. As

in Subsection 4.3, the contract with risk-taking may be chosen when pledgeable income is

low and the moral hazard problem is severe.

The overall effect of margins on risk-taking, and hence counterparty risk, is ambiguous.

On one hand, margins improve the protection sellers risk-prevention incentives, which makes

it more likely that the protection buyer chooses the contract without counterparty risk. On

the other hand, margins protect the buyer from counterparty risk, which makes it more likely

that he indeed chooses the contract with such risk.

6 Multiple protection sellers

Instead of one protection seller with assets A, consider N protection sellers, indexed by

i = 1, . . . , N , each with A
N

. Each of the N assets generates a return R per unit if the

protection seller exerts risk-prevention effort. When a protection sellers does not exert effort,

she exposes herself to a macro-shock that is common to all sellers. If the shock realizes (which

happens with probability 1 − p), then assets return 0 for those protection sellers who did

not exert effort. For simplicity, we conduct the analysis for the case in which there are no

margins.
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We first study the situation in which protection sellers cannot retrade or reinsure the

contract. The objective of the protection buyer now is

max
τ̄i,τ i

prob[s̄]u(E[θ̃|s̄] +
N∑
i=1

τ̄i) + prob[s]u(E[θ̃|s] +
N∑
i=1

τ i),

subject to the participation and incentive constraints

E[τi] ≤ 0, APi ≥ τ̄i and APi ≥ τ i, i ∈ {1, ..., N},

where

APi =
A

N

(
R− B

1− p

)
.

The solution to this program is stated the following proposition.

Proposition 7 (Multiple sellers) The optimal contract inducing N protection sellers to

exert risk-prevention effort is given by τ̄i = τ̄
N

and τ i = τ
N

, i = 1, . . . , N , where τ̄ and τ

are the expected transfers conditional on the signal defined in (4) and (5), evaluated at the

optimal transfers given in Proposition 2.

Proposition 7 states that when the N protection sellers cannot retrade the contract, then

the aggregate outcome for the protection buyer is the same as with only one protection seller.

The linear participation and incentive constraints can be aggregated so that the optimization

problem with N protection sellers of size A
N

is equivalent to the problem with one seller of

size A. Thus, as in Proposition 2, the participation constraints of the protection sellers, as

well as their incentive compatibility condition after a bad signal, bind.

Next, we turn to the situation in which protection sellers can retrade the contract among

themselves. In the CDS market, such retrading is referred to as novation. As explained

in Duffie, Li and Lubke (2010), this corresponds to the following situation: there is an

original trade between parties A and B, but B wants to exit its position and pass it on

to party C. After novation, there is a new counterparty relationship between A and C. As

documented in Duffie et al. (2010), before 2005 the novation process could take place without

the consent or even the awareness of A. But then “regulators required that dealers adopt

the novation protocol, ensuring that all parties would henceforth be aware of the identities

of their counterparties at all times.”

For simplicity, we focus on N = 2. Our starting point are the contracts between the

protection buyer and each protection sellers that implement the second best with effort
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(Proposition 7). Now consider the possibility for protection seller 1 to acquire the contract

held by seller 2 and suppose the transaction frees seller 2 from all obligations towards the

protection buyer stemming from the contract.

Before s̃ is observed, protection seller 2 is indifferent between retrading the contract for

a value of zero and keeping it since her participation constraint binds. What is protection

seller 1’s gain from taking over protection seller 2’s contract at a price of zero? Prior to

acquiring 2’s contract, 1’s incentive constraint after observing a bad signal was binding.

Hence, increasing her position from τ
2

to τ leads her to shirk on risk-prevention effort. Her

expected gain is

prob[s̄]
(
− τ̄

2

)
+ prob[s]

[
AB

2
− (1− p)AR

2
+ (1− p)

(τ
2

)
+ p

(
−τ

2

)]
.

The first term is the extra payment from the protection buyer that protection seller 1 expects

after a good signal. The term in square brackets is the expected gain after a bad signal. The

gain has four components. First, protection seller 1 obtains private benefit AB
2

by shirking on

effort. Second, with probability (1− p) she defaults and loses her assets. However, in case of

default she no longer has to pay the protection buyer, which is the third component. Finally,

with probability p she does not default and has to make payments to the protection buyer.

Using τ
2

= AP
2

= A
2

(
R− B

1−p

)
and E

[
τ
2

]
= 0 from the binding incentive and participation

constraints, seller 1’s gain simplifies to

prob[s] (1− p) AP
2
, (31)

which is strictly positive. Hence, we can state our next proposition:

Proposition 8 (Retrading) When the protection sellers can retrade the contract and trans-

fer all the corresponding obligations, the second-best outcome with effort is not an equilibrium.

The contract in Proposition 7 reflects the anticipation of the protection buyer that the

protection sellers will not default. Hence, the buyer is willing to pay a large transfer to sellers

when the good state θ̄ occurs expecting, in return, receiving payments from sellers when the

bad state θ occurs. But, after retrading, some protection sellers have built up positions whose

embedded liability exceeds their pledgeable income. This undermines their incentives to exert

effort. Such an excessive concentration of contracts, and the corresponding counterparty risk,

reduce the value of the insurance payment promised to the protection buyer. The protection

buyer’s expected loss is the expected gain of the protection sellers.
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To restore optimality, retrading must be regulated. One possibility is to require that

novation be allowed only if the protection buyer agrees with it. As discussed in Duffie

et al. (2010), such a novation protocol has been put forward by the International Swaps

and Derivatives Association. Alternatively, initial margins designed to make accumulating

contracts costly can restore incentives. Such margins must be deposited before the signal

realizes (in contrast to the variation margin analyzed above). Consider again the case of

two protection sellers. If both sellers retain the contract in Proposition 7, no initial margin

is required. In contrast, if one of the protection sellers wants to retrade, which leads to a

position incommensurate to her pledgeable income, she must put up an initial margin. If

the cost of liquidating assets to comply with the initial margin (α0) exceeds the gain from

retrading (31), i.e., if

prob[s] (1− p) AP
2
≤ A

2
(R− 1)α0,

then the second-best outcome with effort stated in Proposition 7 cannot be destabilized by

retrading.

7 Conclusion

We analyze contracting between protection sellers and buyers. We show how contracts

designed to engineer risk-sharing generate incentives for risk-taking. When the position of

the protection seller becomes a liability for her, it undermines her incentives to exert risk-

prevention effort. The failure to exert such effort may lead to the default of a protection

seller. Thus, bad news about derivative positions can propagate to other lines of business of

financial institutions and, when doing so, create endogenous counterparty risk for protection

buyers.

When the seller’s moral hazard is moderate, margins enhance the scope for risk-sharing.

Initial margins discourage retrading and the accumulation of excessive derivatives positions,

while variation margins discourage risk-taking for a given position. These results contrast

with those of Brunnermeier and Pedersen (2009) who show that margins can be destabilizing.

The contrast stems from the differences between their assumption and ours. Brunnermeier

and Pedersen (2009) take margin constraints as given and, for these margins, derive equi-

librium prices. Greater margins force intermediaries to sell more after bad shocks, which

pushes prices down and can generate spirals. In contrast, we endogenize margins, but take

as given the price at which a protection seller liquidates some of her position to deposit
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cash on a margin account. It would be interesting, in future research, to combine the two

approaches and study how endogenous margins could be destabilizing when prices are en-

dogenous. Destabilization could arise if the margin requirement that is privately optimal for

a protection buyer and his counterparty had external effects on other investors via equilib-

rium prices as in Brunnermeier and Pedersen (2009). Such research would be in line with the

macroprudential approach put forward by Hanson, Kashyap and Stein (2011) highlighting

the general effects that arise when many financial institutions attempt to shrink their assets

simultaneously.
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Appendix

Proof of Proposition 1 Let µ denote the Lagrange multiplier on the participation

constraint (2). The first-order conditions are

πλu′(θ̄ + τ(θ̄, s̄))− µπλ = 0

(1− π)(1− λ)u′(θ + τ(θ, s̄))− µ(1− π)(1− λ) = 0

π(1− λ)u′(θ̄ + τ(θ̄, s))− µπ(1− λ) = 0

(1− π)λu′(θ + τ(θ, s))− µ(1− π)λ = 0

It follows that the marginal utility of the protection buyer is equalized across states and that

the participation constraint is binding: ū′(τ(θ̄, s̄)) = ū′(τ(θ̄, s)) = u′(τ(θ, s)) = u′(τ(θ, s̄)) =

µ > 0, where we use the shorthand ū′(τ(θ̄, s̃)) and u′(τ(θ, s̃)) to denote marginal utility in

state θ̄ and θ, respectively, conditional on the signal s̃. The optimal transfers are obtained

by using the fact that the participation constraint is binding and that consumption is the

same across all (θ̃, s̃) states. QED

Proof of Lemma 1 Plugging the first-best transfers from Proposition 1 into the in-

centive conditions (6), (7) and (8), yields AP ≥ (π− π̄)∆θ and AP ≥ (π−π)∆θ. When the

signal is informative, λ > 1
2
, we have π̄ > π > π. The result in the lemma follows. QED

Proof of Lemma 2 Let µs̄ and µs denote the Lagrange multipliers on the incentive

compatibility constraints (6) and (7), respectively (µ again denotes the multiplier on the

participation constraint (2)). The first-order conditions are

πλu′(θ̄ + τ(θ̄, s̄))− µs̄π̄ − µπλ = 0

(1− π)(1− λ)u′(θ + τ(θ, s̄))− µs̄(1− π̄)− µ(1− π)(1− λ) = 0

π(1− λ)u′(θ̄ + τ(θ̄, s))− µsπ − µπ(1− λ) = 0

(1− π)λu′(θ + τ(θ, s))− µs(1− π)− µ(1− π)λ = 0
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They rewrite as

ū′(τ(θ̄, s̄)) = µ+ µs̄
π̄

πλ
(32)

u′(τ(θ, s̄)) = µ+ µs̄
1− π̄

(1− π)(1− λ)
(33)

ū′(τ(θ̄, s)) = µ+ µs
π

π(1− λ)
(34)

u′(τ(θ, s)) = µ+ µs
1− π

(1− π)λ
(35)

The participation constraint must bind. Suppose not, i.e. µ = 0. Then, (32) and (33)

imply that µs̄ > 0. Similarly, (34) and (35) imply that µs > 0. Both incentive constraints

bind so that AP = τ̄ = τ . Since the participation constraint is slack, it must be that

0 > E[τ ] ≡prob[s̄]τ̄+prob[s]τ = AP (prob[s̄] + prob[s]) = AP , which contradicts AP > 0.

Hence, the participation constraint binds, E[τ ] = 0.

Proof of Lemma 3 First, it cannot be that both incentive constraints are slack since

we assume that the first-best is not attainable, AP < (π−π)∆θ. It also cannot be that both

constraints are binding since τ̄ = τ = AP > 0 contradicts E[τ ] = 0 (Lemma 2). We now

show that it is the incentive constraint following a bad signal that is binding. Suppose not,

so that AP = τ̄ > 0 > τ where the last inequality follows from the binding participation

constraint E[τ ] = 0 (Lemma 2). Then, µs = 0 and µs̄ ≥ 0 and equations (32) through (35)

yield

ū′(τ(θ̄, s)) = u′(τ(θ, s)) = µ ≤ ū′(τ(θ̄, s̄)) = u′(τ(θ, s̄))

Comparing the first with the third term and the second with the fourth term yields τ(θ̄, s) ≥
τ(θ̄, s̄) and τ(θ, s) ≥ τ(θ, s̄). Moreover, from (32)-(35) and

π̄

πλ
=

1− π̄
(1− π)(1− λ)

=
1

prob[s̄]
and

π

π(1− λ)
=

1− π
(1− π)λ

=
1

prob[s]
,

it follows that there is full risk-sharing conditional on the signal, i.e., ū′(τ(θ̄, s̄)) = u′(τ(θ, s̄))

and ū′(τ(θ̄, s)) = u′(τ(θ, s)) and thus τ(θ, s̄) − τ(θ̄, s̄) = τ(θ, s) − τ(θ̄, s) = ∆θ > 0. Using

τ(θ, s̃) > τ(θ̄, s̃) and π̄ > π, we can write

0 < τ̄ ≡ π̄τ(θ̄, s̄) + (1− π̄)τ(θ, s̄)

< πτ(θ̄, s̄) + (1− π)τ(θ, s̄)

≤ πτ(θ̄, s) + (1− π)τ(θ, s) ≡ τ
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But τ < 0, hence there is a contradiction. Consequently, only the incentive constraint after

a bad signal binds. QED

Proof of Proposition 2 The optimal contract is given by the binding incentive con-

straint following a bad signal, AP = τ (Lemma 3), the binding participation constraint,

E(τ) = 0 (Lemma 2), and full risk-sharing conditional on the signal (10) (in the proof of

Lemma 3). QED

Proof of Proposition 3 Let µs̄ and µs denote the Lagrange multipliers on the incentive

compatibility constraints (13) and (14), respectively, and let µ denote the multiplier on the

participation constraint (15). The first-order conditions with respect to transfers τ(θ̄, s̄, R),

τ(θ, s̄, R), τ(θ̄, s, R), τ(θ, s, R) and τ(θ̄, s, 0) are:

ū′(τ(θ̄, s̄, R)) = µ+
µs̄

prob[s̄]
(36)

u′(τ(θ, s̄, R)) = µ+
µs̄

prob[s̄]
(37)

ū′(τ(θ̄, s, R)) = µ−
µs

pprob[s]
(38)

u′(τ(θ, s, R)) = µ−
µs

pprob[s]
(39)

ū′(τ(θ̄, s, 0)) = µ+
µs

(1− p) prob[s]
(40)

where we use the shorthand ū′(τ(θ̄, s̃, R̃)) and u′(τ(θ, s̃, R̃)) to denote marginal utility in

state θ̄ and θ, respectively, conditional on the signal s̃ and the return R̃.

We first show that the participation constraint binds. Suppose instead that the constraint

is slack, implying µ = 0. Since µs ≥ 0, equations (38) and (39) cannot hold. A contradiction.

Next, we show that the incentive constraint after a bad signal (14) is slack, implying

µs = 0. Suppose that the constraint binds and AP+πτ(θ̄, s, 0) = πτ(θ̄, s, R)+(1−π)τ(θ, s, R)

implying that

πτ(θ̄, s, R) + (1− π)τ(θ, s, R) ≤ AP (41)

since τ(θ̄, s, 0) ≤ 0. The participation constraint binds and rewrites as

− prob[s](1− p)
[
AP+πτ(θ̄, s, 0)

]
= prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+

prob[s]p
[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
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Using the binding incentive constraint (14) in the equation above and simplifying yields

prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+ prob[s]

[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
= 0 (42)

Equations (41) and (42) imply that the optimal transfers τ(θ̄, s̄, R), τ(θ, s̄, R), τ(θ̄, s, R)

and τ(θ, s, R) satisfy the incentive-compatibility condition inducing effort after bad news (7)

and the participation constraint (2) in the contract with effort after both signals. Hence,

inducing effort after both signals is feasible with these transfers. We now show that, given

these transfers, the expected utility of the contract with effort after both signals is strictly

higher than the expected utility of the contract without effort after bad news, i.e.:

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(θ + τ(θ, s̄, R)) + π(1− λ)u(θ̄ + τ(θ̄, s, R))

+ (1− π)λu(θ + τ(θ, s, R))− πλu(θ̄ + τ(θ̄, s̄, R))− (1− π)(1− λ)u(θ + τ(θ, s̄, R))

− π(1− λ)[pu(θ̄ + τ(θ̄, s, R)) + (1− p)u(θ̄ + τ(θ̄, s, 0))]

− (1− π)λ[pu(θ + τ(θ, s, R)) + (1− p)u(θ)] ≥ 0

The left-hand side simplifies to:

π(1−λ) (1− p)
[
u(θ̄ + τ(θ̄, s, R))− u(θ̄ + τ(θ̄, s, 0))

]
+(1−π)λ (1− p) [u(θ + τ(θ, s, R))− u(θ)]

It follows from equations (38) and (40) that ū′(τ(θ̄, s, R)) ≤ ū′(τ(θ̄, s, 0)) and thus τ(θ̄, s, R) ≥
τ(θ̄, s, 0). Hence, the expression in the first square bracket is non-negative. Next note that

τ(θ, s, R) > 0. Suppose not. Equations (36)-(40) imply that 0 ≥ τ(θ, s, R) ≥ τ(θ, s̄, R) >

τ(θ̄, s̄, R) and 0 ≥ τ(θ, s, R) > τ(θ̄, s, R) ≥ τ(θ̄, s, 0). But optimal transfers cannot be all

zero or negative as the buyer would then get no insurance. Since τ(θ, s, R) > 0 the expression

in the second square bracket is positive. Hence, the protection buyer prefers to induce effort

after bad news, contradicting the optimality of the contract with risk-taking after bad news.

We conclude that if risk-taking after bad news is optimal, the incentive constraint after a

bad signal (14) must be slack.

Hence, we have full sharing of the θ̃ risk conditional on the signal except when the seller

defaults in the θ state: ū′(τ(θ̄, s̄, R)) = u′(τ(θ, s̄, R)) and ū′(τ(θ̄, s, R)) = u′(τ(θ, s, R)) =

ū′(τ(θ̄, s, 0)). Therefore

τ(θ, s̃)− τ(θ̄, s̃) = ∆θ > 0 (43)

We now show that the incentive constraint after a good signal (13) is also slack, implying

µs̄ = 0. When the constraint is slack, there is full insurance except when the seller defaults
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in θ state, i.e. we have:

τ(θ̃, s̄, R) = τ(θ̃, s, R) and τ(θ̄, s, R) = τ(θ̄, s, 0) (44)

The optimal contract in this case is given by equations (43), (44) and the binding partic-

ipation constraint. We now check under what conditions the incentive constraint following

a good signal is indeed slack with that contract. Starting with the binding participation

constraint and using (43) and (44), we get

− prob[s](1− p)AP = prob[s̄][τ(θ, s, R)− π̄∆θ]

+ prob[s]p[τ(θ, s, R)− π∆θ] + (1− p) prob[s]π [τ(θ, s, R)−∆θ]

Hence,

τ(θ, s, R) =
π∆θ − prob[s] (1− p)AP
1− prob[s] (1− π) (1− p)

(45)

For the incentive constraint following a good signal (13) to be slack, it must be that

AP > π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R) = τ(θ, s, R)− π̄∆θ

or, after substituting for τ(θ, s) and simplifying,

AP > ∆θ
π − π̄ [1− prob[s] (1− π) (1− p)]

1 + prob[s]π (1− p)
(46)

Condition (46) is always satisfied if

π − π̄ [1− prob[s] (1− π) (1− p)] < 0 (47)

since AP > 0. Condition (47) is equivalent to λ2(1− p)− 2λ+ 1 < 0. This inequality holds

under our assumption (9), i.e. for all λ ≥ λ∗ ≡ 1−√p
1−p > 1

2
. This is because the left-hand side

of the inequality above is decreasing in λ and it is equal to zero for λ∗. QED

Proof of Proposition 4 The proof proceeds in three steps. First, we show that the

expected utility of the protection buyer when the protection seller is exerting effort after

both signals is increasing in P . Its derivative is

− prob[s]A

prob[s̄]

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(θ, s̄))

]
+ π (1− λ) ū′(τ(θ̄, s)) + (1− π)λ

¯
u′(τ(θ, s))

= prob[s]A
[
ū′(τ(θ̄, s))− ū′(τ(θ̄, s̄))

]
> 0
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since τ(θ̄, s) < τ(θ̄, s̄).

Second, we show that the expected utility of the protection buyer when there is risk-

taking after bad news is decreasing in P . Its derivative is

− prob[s] (1− p)A
1− prob[

¯
s] (1− π) (1− p)

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(

¯
θ, s̄))

+ π (1− λ) ū′(τ(θ̄, s)) + (1− π)λp
¯
u′(τ(θ, s))

]
= − prob[s] (1− p)A

1− prob[s] (1− π) (1− p)
[
πū′(τ(θ̄, s̄)) + (1− π)((1− λ) + pλ)

¯
u′(τ(θ, s̄))

]
< 0

Third, we provide a sufficient condition under which, when P = 0, the expected utility

of the protection buyer is smaller when effort is requested after bad news than when it is

not. The expected utility of the protection buyer when effort is requested after bad news is

[πλ+ (1− π) (1− λ)]u (θ + π̄∆θ) + [π (1− λ) + (1− π)λ]u (θ + π∆θ)

= prob[s̄]u (θ + π̄∆θ) + prob[s]u (θ + π∆θ)

= prob[s̄]u(E[θ̃|s̄]) + prob[s]u(E[θ̃|s]) (48)

With risk-taking after bad news it is

(prob[s̄] + prob[s] (p+ (1− p) π))u

(
θ +

π∆θ

1− prob[s] (1− π) (1− p)

)
+ (1− p) prob[s] (1−

¯
π)u(θ)

= (prob[s̄] + pprob[s])u
(
Ê[θ̃]

)
+ (1− p) prob[s]

(
πu
(
Ê[θ̃]

)
+ (1− π)u(θ)

)
(49)

where Ê[θ̃] ≡ π̂θ̄ + (1− π̂)θ and π̂ ≡ π
1−prob[s](1−π)(1−p) . Note that

π̄ > π̂ > π > π (50)

for p ∈ (0, 1). The last two inequalities are straightforward. The first inequality holds if

and only if λ2(1 − p) − 2λ + 1 < 0 which is satisfied under our assumption (9), i.e. for all

λ ≥ λ∗ ≡ 1−√p
1−p > 1

2
.

Combining (48) and (49), we have that no effort after a bad signal dominates effort (when

P = 0) if and only if

prob[s̄]u(E[θ̃|s̄]) + prob[s]u(E[θ̃|s])

< (prob[s̄] + prob[
¯
s]p)u(Ê[θ̃]) + prob[

¯
s](1− p)EU(R̃ = 0)
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where EU(R̃ = 0) ≡ πu(Ê[θ̃]) + (1− π)u(θ). After collecting terms, we have

prob[s̄]
[
u(E[θ̃|s̄])− u(Ê[θ̃])

]
+ prob[s]

[
u(E[θ̃|s])− EU(R̃ = 0)

]
< pprob[s]

[
u(Ê[θ̃])− EU(R̃ = 0)

]
All the differences in the square brackets are positive. The first one due to (50), the second

one due to the concavity of u, and the third one due to both the concavity of u and (50).

Rearranging, we arrive at

prob[s̄]

prob[s]

u(E[θ̃|s̄])− u(Ê[θ̃])

u(Ê[θ̃])− EU(R̃ = 0)
+
u(E[θ̃|s])− EU(R̃ = 0)

u(Ê[θ̃])− EU(R̃ = 0)
< p (51)

It is clear that the left-hand side is strictly positive so that seller’s effort dominates when p

is small. The left-hand is, however, also strictly smaller than one so that no effort after a

bad signal dominates when p is high.15

The condition

prob[s̄]

prob[s]

u(E[θ̃|s̄])− u(Ê[θ̃])

u(Ê[θ̃])− EU(R̃ = 0)
+
u(E[θ̃|s])− EU(R̃ = 0)

u(Ê[θ̃])− EU(R̃ = 0)
< 1

simplifies to prob[s̄]u(E[θ̃|s̄])+prob[s]u(E[θ̃|s]) < u(Ê[θ̃]). By concavity,

prob[s̄]u(E[θ̃|s̄]) + prob[s]u(E[θ̃|s]) < u(E[θ̃])

and so the condition holds when u(E[θ̃]) ≤ u(Ê[θ̃]) which is always true due to (50).

If it is optimal to have risk-taking after bad news when the protection seller has zero

pledgeable income, it remains so for low levels of P . There is a level of per-unit pledgeable

income such that the expected utility of the protection buyer when effort is requested after

bad news is just equal to its counterpart with risk-taking after bad news. Denote it by P̂ .

For P ≥ P̂ the optimal contract requests effort after good and bad news. QED

Proof of Lemma 4 Let µ and µs denote the Lagrange multipliers on the participation

and incentive-compatibility constraints (21) and (22), respectively. Let µ0 and µ1 be the

Lagrange multipliers on the feasibility constraints α ≥ 0 and α ≤ 1, respectively. The

first-order conditions with respect to expected transfers τ̄ , τ and the margin α are:

u′(E[θ|s̄] + τ̄) = µ (52)

u′(E[θ|s] + τ) = µ+
µs

prob[s]
(53)

µsA (1− P) + µ0 = µprob[s]A (R− 1) + µ1 (54)

15Note that this inequality is evaluated at P = 0 and P is a function of p. There is, however, an open set
of parameters for which no effort after a bad signal dominates.
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where u′(E[θ|s̄]+ τ̄) and u′(E[θ|s]+τ) are marginal utilities conditional on the good and the

bad signal, respectively. Equation (52) implies that µ > 0, i.e., the participation constraint

binds. Substituting (52) and (53) into (54), yields

u′(E[θ|s] + τ)

u′(E[θ|s̄] + τ̄)
= 1 +

R− 1

1− P
+

µ1 − µ0

u′(E[θ|s̄] + τ̄)prob[s] (1− P)A
(55)

For any optimal α ∈ [0, 1], µs > 0 and the incentive constraint after bad news is binding.

This is because of the following: For α = 0, we are solving the same problem as in Section

4.1 and the claim follows from Lemma 3. For 0 < α ≤ 1, we have µ0 = 0 and equation (55)

implies that u′(E[θ|s]+τ)
u′(E[θ|s̄]+τ̄)

> 1. But then, by equations (52) and (53), it must be that µs > 0.

QED

Proof of Lemma 5 Consider equation (54) in the proof of Lemma 4. Since µ1 ≥ 0,

the right-hand side is strictly positive. Now, suppose P ≥ 1. Then, it must be that µ0 > 0

for equation (54) to hold. Hence, α∗ = 0 and margins are not used for P ≥ 1. QED

Proof of Proposition 5 Recall that ϕ is decreasing in α. Hence, if ϕ (0) < 1 + R−1
1−P ,

then ϕ (α) < 1 + R−1
1−P for any α ∈ [0, 1]. From equation (54) in the proof of Lemma 4 we

then have have µ0 > 0 and hence α∗ = 0. By the same logic, if ϕ (1) > 1 + R−1
1−P , then µ1 > 0

and hence α∗ = 1. Otherwise, α∗ ∈ (0, 1) is given by ϕ (α∗) = 1 + R−1
1−P . QED

Proof of Lemma 6 Let µs̄ and µs denote the Lagrange multipliers on the incentive

compatibility constraints (13) and (28), respectively, and let µ denote the multiplier on the

participation constraint (27). Furthermore, let µ0 and µ1 be the Lagrange multipliers on the

feasibility constraints α ≥ 0 and α ≤ 1, and let µ2 and µ3 be the Lagrange multipliers on

the constraints αA ≥ τ(θ, s, 0) and αA ≥ τ(θ̄, s, 0), respectively. The first-order conditions

with respect to transfers τ(θ̄, s̄, R), τ(θ, s̄, R), τ(θ̄, s, R), τ(θ, s, R), τ(θ̄, s, 0), τ(θ, s, 0), and

α are:

ū′(τ(θ̄, s̄, R)) = µ+
µs̄

prob[s̄]
(56)

u′(τ(θ, s̄, R)) = µ+
µs̄

prob[s̄]
(57)

ū′(τ(θ̄, s, R)) = µ−
µs

pprob[s]
(58)

u′(τ(θ, s, R)) = µ−
µs

pprob[s]
(59)
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ū′(τ(θ̄, s, 0)) = µ+
µs

(1− p) prob[s]
+

µ3

(1− λ) π (1− p)
(60)

u′(τ(θ, s, 0)) = µ+
µs

(1− p) prob[s]
+

µ2

(1− π)λ (1− p)
(61)

µprob[s]A [R− 1− (1− p)P ] + µ1 = µ0 + APµs + A (µ2 + µ3) (62)

where we use the shorthand ū′(τ(θ̄, s̃, R̃)) and u′(τ(θ, s̃, R̃)) to denote marginal utility in

state θ̄ and θ conditional on the signal s̃ and the return R̃. We must have that µ > 0, i.e.,

the participation constraint binds. Otherwise, equations (58) and (59) cannot hold. QED

Proof of Lemma 7 First, note that if pR+B < 1 or, equivalently, R− 1 < (1− p)P ,

it follows from equation (62) in the proof of Lemma 6 that µ1 > 0 must hold since the

right-hand side of (62) is non-negative. Hence, α∗ = 1. Second, we claim that if α∗ = 1,

risk-taking after bad news cannot be strictly optimal. For α∗ = 1, the entire balance sheet

of the protection seller is put in the margin after bad news. It is thus ring-fenced from moral

hazard, making effort and no effort equivalent. But then, the contract with effort dominates

the contract without effort (and strictly so when the optimal contract with effort has α < 1).

QED

Proof of Lemma 8 We know from the proof of Lemma 6 that the participation con-

straint binds. We also have that α∗ < 1 (and µ1 = 0) since if α∗ = 1, risk-taking cannot be

strictly optimal.

First, we show that the incentive constraint after bad news must be slack and µs = 0.

Suppose otherwise. Then, we have

πτ(θ̄, s, R) + (1− π)τ(θ, s, R) = (1− α)AP + πτ(θ̄, s, 0) + (1− π)τ(θ, s, 0) (63)

Since τ(θ̄, s, 0) ≤ αA and τ(θ, s, 0) ≤ αA, we have πτ(θ̄, s, R)+(1−π)τ(θ, s, R) ≤ (1− α)AP+

αA implying that transfers τ(θ̄, s, R) and τ(θ, s, R) satisfy the incentive-compatibility con-

dition that induces effort after bad news (22). Using the binding participation constraint,

we get

−prob[s]
[
αA (R− 1) + (1− p)

(
(1− α)AP + πτ(θ̄, s, 0) + (1− π)τ(θ, s, 0)

)]
= prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+ prob[s]p

[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
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or, using (63) and simplifying,

− prob[s]αA (R− 1) = prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+ prob[s]

[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
so that the transfers in the equation above satisfy the participation constraint in the contract

with margins and effort after both signals. Hence, inducing effort after both signals is feasible

with these transfers. Using the same steps as in the proof of Proposition 3, we show that

the expected utility of the contract with margins and effort after both signals is at least as

high as the expected utility of the contract with margins and risk-taking after bad news,

contradicting the optimality of the contract with risk-taking after bad news. Showing this

is equivalent to showing that

π(1−λ)
[
u(θ̄ + τ(θ̄, s, R))− u(θ̄ + τ(θ̄, s, 0))

]
+ (1−π)λ [u(θ + τ(θ, s, R))− u(θ + τ(θ, s, 0))]

is non-negative. The expression in the first square bracket is non-negative by (58) and (60).

The expression in the second square bracket is non-negative by (59) and (61). This completes

the proof of the claim.

Second, we prove by contradiction that αA > τ(θ̄, s, 0) (and µ3 = 0). Hence, suppose

that αA = τ(θ̄, s, 0) and µ3 ≥ 0. Given the feasibility constraint on τ(θ, s, 0), we can

either have αA = τ(θ̄, s, 0) > τ(θ, s, 0), or αA = τ(θ̄, s, 0) = τ(θ, s, 0). We first show

that τ(θ̄, s, 0) > τ(θ, s, 0) cannot hold. Suppose otherwise, so that µ2 = 0. Equations

(60) and (61) imply that ū′(τ(θ̄, s, 0)) ≥ u′(τ(θ, s, 0)) so that θ̄ + τ(θ̄, s, 0) ≤ θ + τ(θ, s, 0)

or, equivalently, ∆θ + αA ≤ τ(θ, s, 0) which contradicts τ(θ, s, 0) < αA. We next show

that τ(θ̄, s, 0) = τ(θ, s, 0) cannot hold either. Suppose otherwise, so that αA = τ(θ̄, s, 0) =

τ(θ, s, 0). By (58) and (60), τ(θ̄, s, R) ≥ τ(θ̄, s, 0), and by (59) and (61), τ(θ, s, R) ≥ τ(θ, s, 0)

implying

τ(θ̄, s, R) ≥ τ(θ̄, s, 0) = αA ≥ 0 (64)

τ(θ, s, R) ≥ τ(θ, s, 0) = αA ≥ 0

Since the participation constraint binds, we have

prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(θ, s̄, R)

]
+ prob[s]p

[
πτ(θ̄, s, R) + (1− π)τ(θ, s, R)

]
= −prob[s] [αA (R− 1) + (1− p) (αA+ (1− α)AP)]
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The right-hand side of the expression above is negative. On the left-hand side, the second

term in square bracket is non-negative by (64). We now show that the first term in square

bracket is also non-negative, implying that the equation above cannot hold. We either have

that the incentive constraint after good news binds or it is slack. If it binds, then the first

term on the left-hand side (in square bracket) is equal to AP > 0. If it is slack, then µs̄ = 0

and τ(θ̄, s̄, R) = τ(θ̄, s, R) ≥ αA while τ(θ, s̄, R) = τ(θ, s, R) ≥ αA so that the expected

transfer is non-negative. This completes the proof the claim.

Third, we show that αA = τ(θ, s, 0). Suppose otherwise, αA > τ(θ, s, 0) (i.e., µ2 = 0).

Then, by equations (58) through (61), there is full insurance conditional on bad news, and

expected transfers after bad news are equal to zero. But then, the incentive constraint after

bad news (28) cannot be slack for any α ∈ [0, 1]. A contradiction.

4) Fourth, we solve the relaxed problem, where the incentive constraint after good news

is not imposed (and µs̄ = 0). Then, we verify that the constraint holds for the solution of

the relaxed problem. Equation (62) yields

0 ≤ µ2 = µprob[s] [R− 1− (1− p)P ]− µ0

A

Replacing R−1−(1− p)P with pR+B−1, and using the first-order conditions to substitute

for µ and µ2, we arrive at:

u′(τ(θ, s, 0))

u′(τ(θ, s, R))
≡ φ(α) = 1 +

pR +B − 1

(1− p) (1− π)
− µ0

u′(τ(θ, s, R))A (1− p) prob[s] (1− π)
(65)

For µs = µs̄ = µ3 = 0, we have by (56) through (60) that τ(θ̄, s̄, R) = τ(θ̄, s, R) =

τ(θ̄, s, 0) and τ(θ, s̄, R) = τ(θ, s, R). Using the participation constraint, this gives the optimal

transfers stated in the lemma.

For this candidate contract, the incentive constraint (13) is slack if and only if

AP + π̄∆θ >
π∆θ − prob[s] (1− p)AP
1− prob[s] (1− π) (1− p)

− αAprob[s] [pR +B − 1 + (1− π) (1− p)]
1− prob[s] (1− π) (1− p)

,

which holds under (9). QED

Proof of Proposition 6 Recall that φ is decreasing in α. Hence, if φ (0) < 1 +
pR+B−1

(1−p)(1−π)
, then φ (α) < 1 + pR+B−1

(1−p)(1−π)
for any α ∈ [0, 1]. So we must have µ0 > 0 and hence

margins are not used. If φ(1) > 1 + pR+B−1
(1−p)(1−π)

, then (65) cannot hold for any α ∈ [0, 1) and

the contract with margins and no effort cannot be strictly optimal. Otherwise, the optimal

margin is as given in (30). QED
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Proof of Proposition 7 Consider the contract with effort after both signals. Suppose,

contrary to the claim in the proposition, that there exists a contract (τ̄í, τ í) 6= (τ̄i, τ i),

i = 1, . . . , N , which satisfies participation and incentive constraints of each protection seller

and yields a higher utility for the protection buyer.

Since τ̄í ≤ APi and τ í ≤ APi with Pi = P
N

holds for each i, we have
N∑
i=1

τ̄í ≤ AP and

N∑
i=1

τ í ≤ AP . Similarly, E[τí] ≤ 0 for each i implies that
N∑
i=1

E[τí] ≤ 0. Let
N∑
i=1

τ̄í ≡ τ̄́ and

N∑
i=1

τ í ≡ τ́ . Then, we have that

prob[s̄]u(E[θ̃|s̄] + τ̄́) + prob[s]u(E[θ̃|s] + τ́) >

prob[s̄]u(E[θ̃|s̄] + τ̄) + prob[s]u(E[θ̃|s] + τ)

But this contradicts the optimality of τ̄ and τ for N = 1. QED
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Figure 1: Sequence of events
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−prob[

¯
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prob[s̄]AP

Figure 2: The figure shows the contract space with expected transfers conditional on the
bad and the good signal on the x- and y-axis, respectively. Point A represents the first-
best contract. Point B represents the optimal contract when the protection seller exerts
risk-management effort after a bad signal.
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Figure 3: The figure shows the contract space with expected transfers conditional on the
bad and the good signal on the x- and y-axis, respectively. Point E represents the optimal
contract with margins when the protection seller exerts risk-management effort after a bad
signal.
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