

ESTIMATING A SMALL DSGE MODEL UNDER RATIONAL AND MEASURED EXPECTATIONS: SOME COMPARISONS

Maritta Paloviita Expectations and Business Cycle Dynamics 8th Annual Bank of Finland/CEPR Conference Helsinki, 1-2 November 2007

New Keynesian DSGE models

- Widely used in macroeconomic research and monetary policy analysis
- Various techniques in empirical analysis
 - Maximum likelihood (Ireland 2001)
 - Bayesian techniques (Smets and Wouters 2003)
 - Instrumental variable methods (McCallum and Nelson 1998)
- Revised (i.e. final data)
- Central role of expectations
 - Unobservable variables
- Joint hypothesis: model structure and expectations formation

How to treat expectations when estimating DSGE models?

Rational expectations (RE)

- Too restrictive assumption?
- Biased estimated parameters?
- Distorted policy implications?
- Alternative assumptions of expectations formation
 - Learning approach (Evans and Honkapohja 2001, 2003, Milani 2007)
 - Sticky information (Mankiw and Reis 2001, 2002)
 - Limited information channels (Woodford 2002, Adam 2007)
 - Heterogeneous expectations (Branch 2004)
 - Epidemiology (Carroll 2001)
- Empirical relevance has not been firmly established

Alternatively approach: measured expectations (ME)

- Reflect imperfect and noisy information at the time
- Do not include subsequent revisions in the data
- No specific assumption of expectations formation
- Sources: <u>surveys</u>, forecasts, financial market data
- Possible to analyse expectational errors
 - Should be white noise under rationality
 - Possible autocorrelation indicates deviations from rationality
- Possible to compare the empirical performance of RE model and ME model

Data

- Panel euro area data: 1990-2004
- Revised (final) variables: OECD National Accounts
- Consensus Economics survey data
 - Expected inflation
 - Expected output gap
 - Current output gap in the Taylor rule (Orphanides 2001)
- Consumer price changes, 12 month money market rates
- HP filtered output gaps
- EMU is taken into account in the Taylor rule

Median values of euro area variables

Analysis of expectational errors

- Expectational errors of measured variables should be white noise under rationality
- Are measured expectations accurate and unbiased?
- Time series properties of expectational errors?
- Unbiasedness test and RMSE:
 - Weak support for the rationality
- Ljung-Box autocorrelation tests
 - Strong evidence of positive autocorrelation
- Orthogonality tests
 - Strong evidence of positive autocorrelation
- Deviation from rationality is potentially important in the DSGE model framework

System estimation

Comparison of the RE and ME results

- The only difference: expectations terms
- Same instrument sets
- Same modification of standard errors
- Alternative specifications of the Taylor rule
- Two estimation methods
 - Rational expectations assumption: GMM
 - Measured expectations: LS and GMM
- Measured expectations are treated as exogenous or endogenous variables
 - Measurement errors
 - Simultaneity problems
- Robustness analysis
 - With and without endogenous persistence
 - Habit formation
 - Rule of thumb behaviour/indexation in price setting
 - Interest rate smoothing

GMM estimation results - current variables in the Taylor rule

Rational expectations

$$y_{t} = (1 - \mu) \mathbf{E}_{t} \mathbf{y}_{t+1} + \mu y_{t-1} + \phi(r_{t} - \mathbf{E}_{t} \boldsymbol{\pi}_{t+1} + r^{*})$$

$$\pi_{t} = (1 - \delta) \mathbf{E}_{t} \mathbf{\check{s}}_{t+1} + \delta \pi_{t-1} + \lambda y_{t}$$

$$r_{t} = \alpha_{1} D_{EMU} + \alpha_{2} (1 - D_{EMU}) + \beta \pi_{t}^{EMU} + \gamma y_{t}^{EMU}$$

$$y_{t} = (1 - \mu)\overline{E}_{t}y_{t+1} + \mu y_{t-1} + \phi(r_{t} - \overline{E}_{t}\pi_{t+1} - r^{*})$$

$$\pi_{t} = (1 - \delta)\overline{E}_{t}\pi_{t+1} + \delta\pi_{t-1} + \lambda y_{t}$$

$$r_{t} = \alpha_{1}D_{EMU} + \alpha_{2}(1 - D_{EMU}) + \beta\pi_{t}^{EMU} + \gamma y_{t}^{EMUrt}$$

$$\frac{\mu}{RE} = 0.485 - 0.040 - 3.795 - 0.463 - 0.077 - 0.247 - 2.168 - 1.724 - 0.049 - 0.053 - 0.036) - 0.0211 - 0.110 - 0.045 - 0.045 - 0.048 - 0.131 - 0.214 - 2.188 - 1.731 - 0.078 - 0.120 - 0.045 - 0.045 - 0.0311 - 0.054 - 0.054 - 0.018 - 0.024 - 0.0360 - 0.058 - 0.017 - 0.0054 - 0.0054 - 0.0018 - 0.0214 - 0.0058 - 0.0017 - 0.0018 - 0.0$$

GMM estimation results - expected inflation in the Taylor rule

Rational expectations

$$y_{t} = (1 - \mu) \mathbf{E}_{t} \mathbf{y}_{t+1} + \mu y_{t-1} + \phi(r_{t} - \mathbf{E}_{t} \boldsymbol{\pi}_{t+1} + r^{*})$$

$$\pi_{t} = (1 - \delta) \mathbf{E}_{t} \boldsymbol{\pi}_{t+1} + \delta \overline{\pi}_{t-1} + \lambda y_{t}$$

$$r_{t} = \alpha_{1} D_{EMU} + \alpha_{2} (1 - D_{EMU}) + \beta \mathbf{E}_{t} \boldsymbol{\pi}_{t+1}^{EMU} + \gamma y_{t}^{EMU}$$

$$y_{t} = (1 - \mu)\overline{\mathbf{E}}_{t}\mathbf{y}_{t+1} + \mu y_{t-1} + \phi(r_{t} - \overline{\mathbf{E}}_{t}\boldsymbol{\pi}_{t+1} - r^{*})$$

$$\pi_{t} = (1 - \delta)\overline{\mathbf{E}}_{t}\boldsymbol{\pi}_{t+1} + \delta\pi_{t-1} + \lambda y_{t}$$

$$r_{t} = \alpha_{1}D_{EMU} + \alpha_{2}(1 - D_{EMU}) + \beta\overline{\mathbf{E}}\boldsymbol{\pi}_{t+1}^{EMU} + \gamma y_{t}^{EMUrt}$$

Robustness analysis: No endogenous persistence in the Phillips curve

Rational expectations

			\frown	\frown					
μ	ϕ	<i>r</i> *	δ	λ	$\alpha_{_1}$	α_{2}	β	γ	p-value
0.672	-0.054	2.302	1.015	0.176	-1.087	-0.041	2.384	0.249	0.001
(0.054)	(0.035)	(1.865)	(0.020)	(0.025)	(0.211)	(0.419)	(0.104)	(0.153)	
				\bigcirc					

Robustness analysis: Interest rate smoothing in the Taylor rule

Rational expectations

Conclusions

- Errors of measured expectations are clearly positively autocorrelated
 - Deviations from rationality are potentially important for the estimated parameters of the model
- Measured expectations improve the empirical relevance of the DSGE model
 - More reasonable parameter estimates
- Endogenous persistence seems to be needed in IS and PC
 - less important in PC under ME

Conclusions, **cont**.

- Measured information is essential in the monetary policy rule
 - Especially in the case of the output gap
 - Under ME forward looking Taylor rule is supported by the data
 - Endogenous persistence seems to be needed in the Taylor rule only under RE
 - May reflect informational limitations
- Consistent results with
 - Paloviita and Mayes (2005)
 - Measured expectations suggest more forward-looking PC and better determined inflation dynamics
 - Orphanides (2001)
 - Informational problems and real time information important in monetary policy rules