
The Role of Expectations in Sudden Stops

Karel Mertens Cornell University

The '98 Korean Crisis

◆□> ◆□> ◆三> ◆三> ・三 のへの

Facts about the Korean Sudden Stop

- 1. Dramatic increase in net exports.
- 2. Dramatic increase in interest rate on sovereign bonds.
- 3. Large contractions in Y, hours, C and I.
- 4. 2 and 3 were short-lived and the crisis was followed by strong growth in Y,C,I.

Facts about the Korean Sudden Stop

- 1. Dramatic increase in net exports.
- 2. Dramatic increase in interest rate on sovereign bonds.
- 3. Large contractions in Y, hours, C and I.
- 4. 2 and 3 were short-lived and the crisis was followed by strong growth in Y,C,I.

At the same time

- No significant fiscal deficits, substantial foreign reserves
- Historically, low foreign debt-to-GDP

• Aguiar and Gopinath 2007 find large declines in *measured* TFP growth

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Aguiar and Gopinath 2007 find large declines in *measured* TFP growth
- Regular shocks drive economy to high-debt region and collateral constraint becomes suddenly binding (Mendoza 2006)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Aguiar and Gopinath 2007 find large declines in *measured* TFP growth
- Regular shocks drive economy to high-debt region and collateral constraint becomes suddenly binding (Mendoza 2006)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Exogenous tightening of binding collateral constraint (Christiano, Gust and Roldos 2004)

- Aguiar and Gopinath 2007 find large declines in *measured* TFP growth
- Regular shocks drive economy to high-debt region and collateral constraint becomes suddenly binding (Mendoza 2006)
- Exogenous tightening of binding collateral constraint (Christiano, Gust and Roldos 2004)
- Exogenous increase in country risk premium (Gertler, Gilchrist and Natalucci 2003)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction			
What hit I	Korea?		

This paper argues that a shift in expectations after a bad news shock can explain Korea-style sudden stops.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction			
What hit	Korea?		

This paper argues that a shift in expectations after a bad news shock can explain Korea-style sudden stops.

- Expectations about future fundamentals, not current fundamentals (CPR 1999; BER 2001), but
 - no perfect foresight
 - future event does not necessarily materialize

Introduction			
What hit	Korea?		

This paper argues that a shift in expectations after a bad news shock can explain Korea-style sudden stops.

- Expectations about future fundamentals, not current fundamentals (CPR 1999; BER 2001), but
 - no perfect foresight
 - future event does not necessarily materialize
- Many crisis models focus on adverse shocks to expectations, but
 - no self-fulfilling prophecy, no equilibrium indeterminacy
 - dynamic general equilibrium with focus on transmission

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Yes!

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Yes!

• No need for large TFP shock to occur

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Yes!

- No need for large TFP shock to occur
- No need to be in high debt state

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Yes!

- No need for large TFP shock to occur
- No need to be in high debt state
- Qualitatively robust across models (Rebelo and Jaimovic 2007)

Introduction		

Can a reasonable bad news shock, under full rationality, lead to

- an increase in net exports
- drops in GDP, hours, investment and consumption

that are quantitatively similar to a Sudden Stop episode as in Korea?

Yes!

- No need for large TFP shock to occur
- No need to be in high debt state
- Qualitatively robust across models (Rebelo and Jaimovic 2007)

• Explains strong recovery

	The model		
The Model			

• Flexible Price DSGE Small Open Economy (Mendoza 1991)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

	The model		
The Mode			

- Flexible Price DSGE Small Open Economy (Mendoza 1991)
- Stochastic Productivity Growth and News Signals
 - A peso problem in productivity growth
 - Imprecise news signal about future productivity growth

	The model		
The Mode			

- Flexible Price DSGE Small Open Economy (Mendoza 1991)
- Stochastic Productivity Growth and News Signals
 - A peso problem in productivity growth
 - Imprecise news signal about future productivity growth
- 3 Amplification Mechanisms:
 - 1. Variable Capacity Utilization
 - 2. Predetermined Labor Input
 - 3. Working Capital Constraint/Expectation-Elastic Country Risk Premium

The model		

News and States of Technology

• Technology growth g_t is a Markov chain with support $\mu = [\mu_B, \mu_G]$ and transition matrix

$${\cal P} = \left[egin{array}{cc} p_{BB} & 1-p_{GG} \ 1-p_{BB} & p_{GG} \end{array}
ight]$$
 ,

where the *ij*-th entry is $P_{ij} = \Pr(g_{t+1} = \mu_i | g_t = \mu_j)$.

The model		

News and States of Technology

• Technology growth g_t is a Markov chain with support $\mu = [\mu_B, \mu_G]$ and transition matrix

$${\sf P} = \left[egin{array}{cc} p_{BB} & 1-p_{GG} \ 1-p_{BB} & p_{GG} \end{array}
ight]$$
 ,

where the *ij*-th entry is $P_{ij} = \Pr(g_{t+1} = \mu_i | g_t = \mu_j)$.

• Agents receive news n_t about g_t N periods in advance.

The model		

News and States of Technology

• Technology growth g_t is a Markov chain with support $\mu = [\mu_B, \mu_G]$ and transition matrix

$${\sf P} = \left[egin{array}{cc} p_{BB} & 1-p_{GG} \ 1-p_{BB} & p_{GG} \end{array}
ight] \; ,$$

where the *ij*-th entry is $P_{ij} = \Pr(g_{t+1} = \mu_i | g_t = \mu_j)$.

- Agents receive news n_t about g_t N periods in advance.
- The agents' perception of the news accuracy is

$$Q=\left[egin{array}{cc} q & 1-q \ 1-q & q \end{array}
ight]$$
 ,

where the *ij*-th element of the first row is $Q_{ij} = \Pr(n_t = \mu_i | g_{t+N} = \mu_j).$

Introduction	The model		

• Full rationality, so Q also drives the news shock process.

Introduction	The model		

- Full rationality, so Q also drives the news shock process.
- Given q, p_{BB} , p_{GG} , I can compute joint transition matrix for g_t and n_t , $n_{t-1},...,n_{t-N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	The model		

- Full rationality, so Q also drives the news shock process.
- Given q, p_{BB} , p_{GG} , I can compute joint transition matrix for g_t and n_t , $n_{t-1},...,n_{t-N}$.

Non-standard parameters:

q: accuracy of the news signal p_{GG} : persistence of the good state p_{BB} : persistence of the bad state

Firms and Technology

Representative firm rents capital services k^s and hires labor h_t to produce y_t :

$$egin{array}{rcl} y_t&=&(k_t^s)^lpha\,(\Gamma_th_t)^{1-lpha}$$
 , $0 , $\Gamma_t&=&g_t\Gamma_{t-1}$,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Firms and Technology

Representative firm rents capital services k^s and hires labor h_t to produce y_t :

$$egin{array}{rcl} y_t&=&(k_t^s)^lpha\left({{\Gamma }_t}{h_t}
ight)^{1-lpha}$$
 , $0 , ${\Gamma }_t&=&g_t{\Gamma }_{t-1}$,$

• Firms must finance $w_t h_t$ in advance by issuing bonds at rate R_{t-1} (working capital constraint)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Firms and Technology

Representative firm rents capital services k^s and hires labor h_t to produce y_t :

$$egin{array}{rcl} y_t &=& (k_t^{s})^lpha \left({\Gamma _t h_t }
ight)^{1 - lpha }$$
 , $0 < lpha < 1$, $\Gamma _t &=& g_t \Gamma _{t - 1}$,

• Firms must finance $w_t h_t$ in advance by issuing bonds at rate R_{t-1} (working capital constraint)

• Firms must set *h_t* prior to the realization of period *t* uncertainty (predetermined labor)

The model		

Households and Preferences

$$E_{0}\sum_{t=0}^{\infty}\exp\left(-\sum_{\tau=0}^{t-1}\beta\left(c_{\tau},l_{\tau}\right)\right)\left[\frac{\left(c_{t}-\Gamma_{t-1}\zeta\frac{l_{t}^{1+\psi}}{1+\psi}\right)^{1-\gamma}\Gamma_{t-1}^{\gamma}}{1-\gamma}\right]$$

where

$$egin{array}{rl} eta(c_{ au},l_{ au}) &=& \xi \ln \left(1+ \Gamma_{ au-1}^{-1} c_{ au} - \zeta rac{l_{ au}^{1+\psi}}{1+\psi}
ight) \ , \ &\psi > 0 \ , \ \gamma > 1 \ , \ 0 < \xi \leq \gamma \ , \ \zeta > 0 \ , \end{array}$$

$$c_t+x_t+R_{t-1}d_t\leq d_{t+1}+w_tl_t+r_tu_tk_t$$
 , $\phi>0$, $\mu>1$,

$$k_{t+1} = x_t + \left(1 - \delta - \eta \frac{u_t^{1+\omega}}{1+\omega}\right) k_t - \frac{\phi}{2} \left(\frac{k_{t+1}}{k_t} - \mu\right)^2 k_t \text{ , } 0 < \eta < 1 \text{ , } \omega > 0$$

Variable capacity utilization: $k_t^s = u_t k_t$

・ロト・(部・・ヨト・ヨー・)への

,

	The model		
The Inter	est Rate		

• Elastic Country Risk Premium following Neumeyer and Perri (2005)

 $R_t = R^* D_t ,$ $D_t = G(E_t[g_{t+1}])$

 $\mathcal{G}(\cdot)=\chi_1\left(1+E_t\left[g_{t+1}
ight]-\mu
ight)^{-\chi_2}$, $\chi_1>1$, $\chi_2\geq 0$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 の < ⊙

	The model		
The Inter	est Rate		

• Elastic Country Risk Premium following Neumeyer and Perri (2005)

 $egin{array}{rcl} R_t &=& R^*D_t \ , \ D_t &=& G\left(E_t\left[g_{t+1}
ight]
ight) \end{array}$

$$G(\cdot)=\chi_1\left(1+E_t\left[g_{t+1}
ight]-\mu
ight)^{-\chi_2}$$
 , $\chi_1>1$, $\chi_2\geq 0$.

• Reduced form, but some foundation in sovereign default models (Arellano 2006)

	The model		
The Inter	est Rate		

• Elastic Country Risk Premium following Neumeyer and Perri (2005)

 $egin{array}{rcl} R_t &=& R^*D_t \ , \ D_t &=& G\left(E_t\left[g_{t+1}
ight]
ight) \end{array}$

$$\mathcal{G}(\cdot)=\chi_1\left(1+\mathcal{E}_t\left[g_{t+1}
ight]-\mu
ight)^{-\chi_2}$$
 , $\chi_1>1$, $\chi_2\geq 0$.

- Reduced form, but some foundation in sovereign default models (Arellano 2006)
- Equivalently, think of changes in R_t as an exogenous shock

	The model		
Equilibrium			

- Given initial conditions k_0 and d_0 and a sequence for productivity growth g_t and news n_t , an equilibrium is a sequence of allocations $\{k_{t+1}, h_t, l_t, d_{t+1}, c_t, x_t, u_t\}_{t=0}^{\infty}$ and prices $\{w_t, r_t, R_t\}_{t=0}^{\infty}$ such that the allocations solve the firms' and households' problems at the equilibrium prices and all markets clear.
- A balanced growth equilibrium is an equilibrium where $[k_{t+1}, d_{t+1}, c_t, x_t]/\Gamma_{t-1}$ are stationary variables.

Model Calibration to Korea

- Model period equals 6 months
- News arrives 2 periods in advance (N=2).
- I need N > 1 for predetermined labor to have an impact.
- Higher *N* increases computational burden (7 state variables)

Model Calibration to Korea

Technology		
α	0.36	standard
δ	-0.026	depreciation is 0.1
η	0.078	utilization is 1
ϕ	2.5	standard
μ	1.019	to match I/GDP
ω	0.05	Baxter and Farr 2001
Household Preferences		
ψ	0.45	Mendoza 1991
ξ	0.061	to match Debt/GDP
γ	2	standard
Interest Rate		
<i>R</i> *	$1.05^{0.5}$	US 3m Tbill
χ_1	$1.01^{0.5}$	Korea EMBI spread
χ2	0.76	to match crisis premium

	Calibration	Conclusion

How to choose q, p_{GG} , p_{BB} and μ_B and μ_G ?

• The news shock should be fairly large, but infrequent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

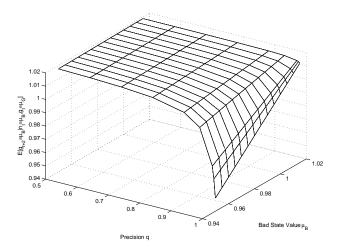
	Calibration	Conclusion

How to choose q, p_{GG} , p_{BB} and μ_B and μ_G ?

- The news shock should be fairly large, but infrequent.
- Peso Problem:

 $p_{GG} = 0.99$ and $\mu_G = 1.019$ or 3.8% annual growth i.e. the expected duration of the Good state is 50 years.

	Calibration	Conclusion


How to choose q, p_{GG} , p_{BB} and μ_B and μ_G ?

- The news shock should be fairly large, but infrequent.
- Peso Problem:

 $p_{GG} = 0.99$ and $\mu_G = 1.019$ or 3.8% annual growth i.e. the expected duration of the Good state is 50 years.

• Given p_{GG} and μ_{G} , what is the expectation of g_{t+2} when Bad news arrives?

Expected Productivity Growth in t + 2 conditional on time t Bad news and current Good technology state.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Calibration	

 $\bullet\,$ Sizeable changes in expectations require high news precision q and/or low μ_B

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Calibration	

- \bullet Sizeable changes in expectations require high news precision q and/or low μ_B
- Let's set q = 0.99 and $\mu_B = 0.985$ such that $E_t [g_{t+2} \mid g_t = \mu_G, n_t = \mu_B] = 1.$
- When Bad news arrives in time t, agents revise their forecast of semiannual productivity growth for t + 2 to 0% down from 1.9%.

Introduction	Calibration	

- \bullet Sizeable changes in expectations require high news precision q and/or low μ_B
- Let's set q = 0.99 and $\mu_B = 0.985$ such that $E_t [g_{t+2} \mid g_t = \mu_G, n_t = \mu_B] = 1.$
- When Bad news arrives in time t, agents revise their forecast of semiannual productivity growth for t + 2 to 0% down from 1.9%.

• Finally, let $p_{BB} = 0.25$ as a benchmark.

Introduction	Calibration	

- \bullet Sizeable changes in expectations require high news precision q and/or low μ_B
- Let's set q = 0.99 and $\mu_B = 0.985$ such that $E_t [g_{t+2} \mid g_t = \mu_G, n_t = \mu_B] = 1.$
- When Bad news arrives in time t, agents revise their forecast of semiannual productivity growth for t + 2 to 0% down from 1.9%.

- Finally, let $p_{BB} = 0.25$ as a benchmark.
- Bad news arrives every 23 years.

• Before period 1997:2, economy is in Good state with news signal correctly predicting the future.

- Before period 1997:2, economy is in Good state with news signal correctly predicting the future.
- In period 1997:2, news arrives that period 1998:2 will be Bad

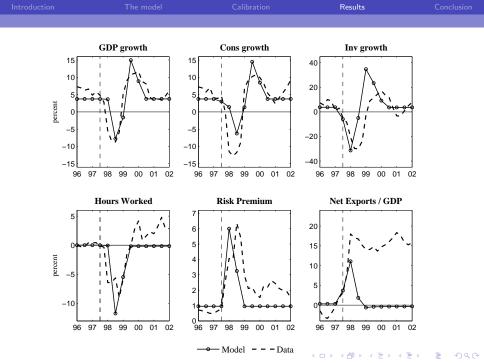
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Before period 1997:2, economy is in Good state with news signal correctly predicting the future.
- In period 1997:2, news arrives that period 1998:2 will be Bad

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 In period 1998:1, bad news persists (period 1999:1 will be Bad)

- Before period 1997:2, economy is in Good state with news signal correctly predicting the future.
- In period 1997:2, news arrives that period 1998:2 will be Bad
- In period 1998:1, bad news persists (period 1999:1 will be Bad)
- In period 1998:2, economy remains in Good State, news signal switches back to Good.


- Before period 1997:2, economy is in Good state with news signal correctly predicting the future.
- In period 1997:2, news arrives that period 1998:2 will be Bad
- In period 1998:1, bad news persists (period 1999:1 will be Bad)
- In period 1998:2, economy remains in Good State, news signal switches back to Good.

• Never any change in productivity growth.

Implied Dynamics of Expectations of Productivity Growth

Period		Expected
t = 1997:2	$\ln g_{t+1}$	1.9%
	$\ln g_{t+2}$	0.0%
t + 1 = 1998:1	$\ln g_{t+2}$	-1.3%
	$\ln g_{t+3}$	0.0%
t + 2 = 1998:2	$\ln g_{t+3}$	0.4%
	$\ln g_{t+4}$	1.9%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dominating effects

• Large decline in hours and output

- Strong leftward shift in labor demand curve (Predetermined labor, working capital constraint, variable capital utilization)
- labor supply curve is unchanged because of GHH preferences

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

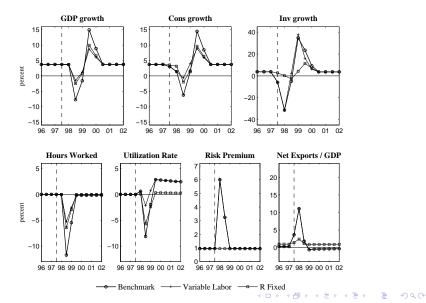
Dominating effects

• Large decline in hours and output

- Strong leftward shift in labor demand curve (Predetermined labor, working capital constraint, variable capital utilization)
- labor supply curve is unchanged because of GHH preferences

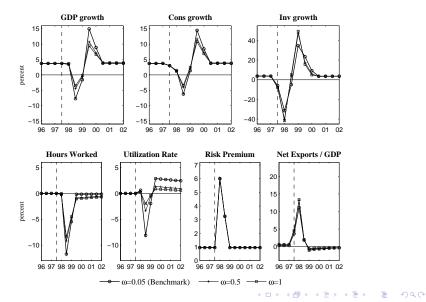
- Large decline in consumption
 - Complementarity of consumption and hours
 - Wealth effects
 - Bond interest rate increase

Dominating effects

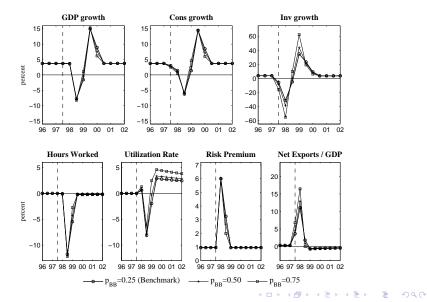

• Large decline in hours and output

- Strong leftward shift in labor demand curve (Predetermined labor, working capital constraint, variable capital utilization)
- labor supply curve is unchanged because of GHH preferences
- Large decline in consumption
 - Complementarity of consumption and hours
 - Wealth effects
 - Bond interest rate increase
- Large decline in investment
 - Lower rental rate of capital (hours and productivity decrease)

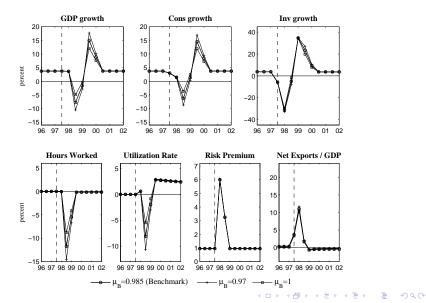
- Bond interest rate increase
- Wealth effects



Relative Importance of Amplification Mechanisms

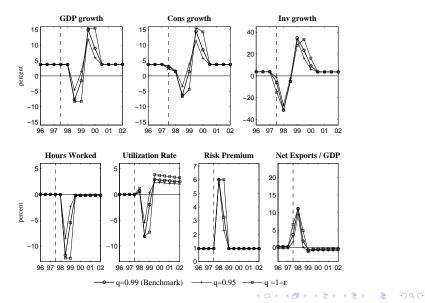

Results

Role of Variable Capacity Utilization



	Results	

Robustness on p_{BB}



Robustness on μ_B

	Results	

Robustness on q

		Conclusion
Conclusion		

- **Bad News Shock**: Relatively straightforward to get increase in net exports, decrease in output, hours, consumption and investment (Rebelo and Jaimovic 2007).
- To be quantitatively successful, I need all of the amplification mechanisms.

- Some issues of timing.
- Cannot explain persistence of net exports.