Stock Market Volatility and Learning

Klaus Adam

(European Central Bank & CEPR)

Albert Marcet

(CREI Pompeu Fabra, IAE & CEPR)

Juan Pablo Nicolini

(Universidad Torcuato di Tella)

September 2007

Research agenda:

Convince the profession: learning-induced small deviations from rationality can significantly improve understanding of economic phenomena.

The strategy:

Simple models of learning can explain what appear to be puzzles from the viewpoint of the (fully) rational expectations literature

Previous Examples:

Marcet and Nicolini (2003):repeated hyperinflations in South
America and their termination

Adam (2005, 2007): response of output & inflation to MP shocks persistence of output and inflation

The aim of this talk:

A very simple (Lucas) asset pricing model can replicate many basic asset pricing moments, once small deviations from RE allowed for

Consumption-based asset pricing models with constant discount factors and RE => 'asset pricing puzzles'

(PD ratio, return volatility, return predictability, equity premium)

Here: one parameter extension of the basic model!

Basic predictions of the Lucas model not robust to small departures from full forecast rationality

& Non-robustness is empirically encouraging!

Standard asset pricing model:

Lucas endowment economy with time-separable preferences and i.i.d. dividend growth

&

Standard learning scheme:

Agents forecast future price and use OLS to estimate forecast functions

Learning:

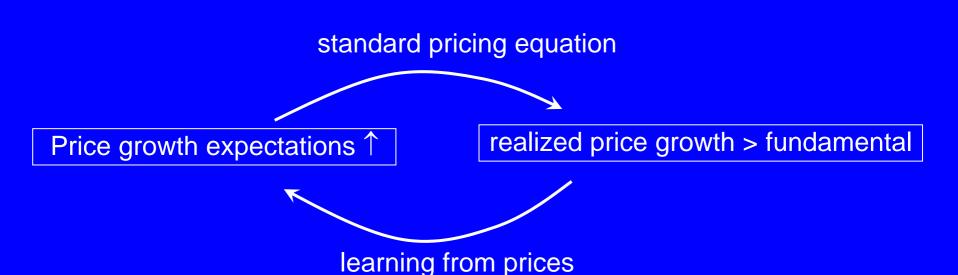
Converges to RE, but takes long time & transitional dynamics very different

Along the convergence process:

Shiller's 'naturally occuring Ponzi schemes'

"Investors, their confidence and expectations buoyed by past price increases, bid up speculative prices further, thereby enticing more investors to do the same, so that the cycle repeats again and again, ... "

Irrational Exuberance, 2005, p.56



	US Data	Learning Model
Statistics	1925:4-2000:4	
$E(r^s)$	2.41	2.41
$E(r^b)$	0.18	0.48
E(PD)	113.20	95.93
σ_{r^s}	11.65	13.21
σ_{PD}	52.98	62.19
$\rho_{PD_t,-1}$	0.92	0.94
c_{2}^{5}	-0.0048	-0.0067
R_5^2	0.1986	0.3012

Literature: models of learning for theoretical analysis to select between REE

Criticism about models of learning to explain empirical facts:

- can choose appropriate learning rule to fit any facts
- introduces free parameters

Our response:

- use most standard learning rule: OLS
- introduce a single free parameter
- impose restrictions on learning: small deviations from rationality
 OLS is best estimator in the long-run, beliefs converges to RE
 transitional departures small: initial belief rational
 high (not complete) confidence in initial belief
 free parameter set to zero: learning model = RE model

Related Literature

- Timmermann (1993,1996)
- Bullard and Duffy (2001)
- Brock and Hommes (1998)
- Brennan and Xia (2001)
- Cogley and Sargent (2006)
- Carceles and Giannitsarou (2006)

Main differences to literature:

- agents forecast future price: crucial !
- fully non-linear model
- standard representative agent assumption
- correctly specified forecasting models
 & emphasis on small deviations from rationality

Outline of talk

I. Basic RE model ⇔ basic facts

II. Basic model with learning: analytical results

III. Risk neutral model with learning: illustrate

IV. Calibrate learning model with risk aversion

Stochastic endowment economy (Lucas 1978):

div./cons. growth i.i.d.

$$\frac{D_t}{D_{t-1}} = a\varepsilon_t$$

$$\log \varepsilon_t \sim N(-\frac{s^2}{2}, s^2)$$

Time-separable utility

$$E_0 \sum_{t=0}^{\infty} \delta^t \frac{(C_t)^{1-\sigma} - 1}{1 - \sigma}$$

s.t.: $P_t S_t + C_t = (P_t + D_t) S_{t-1}$

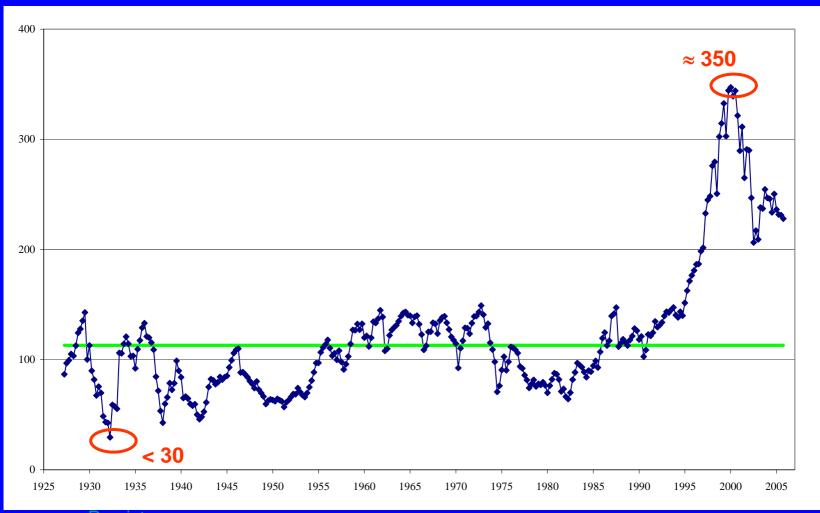
FOC at C=D

$$P_t = \delta E_t \left[\left(\frac{D_t}{D_{t+1}} \right)^{\sigma} \left(P_{t+1} + D_{t+1} \right) \right]$$

Unique stationary solution

$$P_t = \frac{\delta\beta}{1-\delta\beta}D_t$$
 $\beta = a^{1-\sigma}e^{-\sigma(1-\sigma)\frac{\delta^2}{2}}$

Quarterly U.S. Price Dividend Ratio 1927:1-2005:4



Persistence

Fact 1: The PD ratio is very volatile

E(PD)	113.2
σ _{PD}	52.9

Response to the volatility puzzle in the literature:

- habit models: volatile MRS
- MRS only (!) degree of freedom for RE theorist (if *iid* D/C growth)

$$E_0 \sum_{t=0}^{\infty} \delta^t \frac{(\mathbb{C}_t)^{1-\sigma} - 1}{1-\sigma}$$
$$\mathbb{C}_t = H(C_t, C_{t-1}, C_{t-2}, \dots)$$

Abel (1990):

$$\mathbb{C}_{t} = \frac{C_{t}}{C_{t-1}^{\kappa}}$$
$$\frac{P_{t}}{D_{t}} = A(a\varepsilon_{t})^{\kappa(\sigma-1)}$$

<u>PD ratio</u>

Fact 2: The PD ratio is very persistent

ρ_{PD} 0.92

REE models need volatile & persistent MRS

Campbell & Cochrane (1999) successfully engineer habit function

- delivers all the facts that we address in this paper
- complex/many parameters link
- high effective (relative) risk-aversion: 35 in SS & higher out of SS

Shiller (1981), LeRoy & Porter (1981): prices move 'too much'

Redid Shiller-style variance bound analysis:

25 yrs after publication (Japan, EMU, US, 1984-2005) still true!

$$r_t^s = \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \left[\frac{\frac{P_t}{D_t} + 1}{\frac{P_{t-1}}{D_{t-1}}}\right] \frac{D_t}{D_{t-1}} - 1$$

Time separable utility & iid dividends: PD ratio constant

VAR (r^s) \approx VAR (D_t/D_{t-1})

Fact 3: Stock returns are 'excessively' volatile

σ _{r^s}	11.65
$\sigma_{\Lambda D/D}$	2.98

Fact 4: Excess returns predictable over long horizons

 $X(t,t+s) = c_0^s + c_1^s \cdot PD(t)$

Years	Coefficient on PD, c_1^s	<i>R</i> ²
1	-0.0008	0.0438
3	-0.0023	0.1196
5	-0.0048	0.1986
10	-0.0219	0.3285

Although not the focus of the paper, we also look at

Fact 5: Equity premium puzzleE (r^b)0.18E (r^s)2.41

Known since Prescott and Mehra (1985)...

	U.S. asset pricing	facts, 1927	:2-2000:4	Standard RE model
(quarterly	y real values, growth ra	ates & returns	in percentage terms)	
Fact 1	Volatility of	E(PD)	113.20	PD ratio constant
	PD ratio	σ_{PD}	52.98	
Fact 2	Persistence of PD ratio	$\rho_{PD_t,PD_{t-1}}$	0.92	very persistent (trivially so)
Fact 3	Excessive return volatility	σ_{r^s} $\sigma_{\frac{\Delta D}{D}}$	11.65 2.98	Returns as volatile as dividend growth
Fact 4	Excess return predictability	c_2^5 R_5^2	-0.0048 0.1986	No excess return predictability
Fact 5	Equity premium	$E[r^s]$ $E[r^b]$	2.41 0.18	Tiny equity premium for reasonable risk aversion

Illustrate economic mechanism that explains quantitative success of learning model

Most basic asset pricing model: risk neutral model

Add general learning scheme

& derive analytical results

Risk-neutral asset pricing

$$P_{t} = \delta \widetilde{E}_{t} [P_{t+1} + D_{t+1}]$$
$$D_{t}/D_{t-1} = a\varepsilon_{t}$$

Literature: (Bayesian) learning about dividend process (Timmermann, Sargent & Cogley, Brennan & Xia)

$$P_t = \widetilde{E}_t \sum_{j=1}^{\infty} \delta^j D_{t+j}$$

- overall limited asset pricing implications

- no feed-back from prices into beliefs

Learning here: abstract from dividend learning (baseline)

$$P_{t} = \delta \widetilde{E}_{t}(P_{t+1}) + \delta E_{t}(D_{t+1})$$

Study the implications of forecasting future price (what real investors' seem to care about)

RE:
$$E_t \left[\frac{P_{t+1}}{P_t} \right] = a$$
 Learning: $\widetilde{E}_t \left[\frac{P_{t+1}}{P_t} \right] = \beta_t$

Forecasting price:

- \Rightarrow endogenous vars: Bayesian/rational learning not well defined
- \Rightarrow near-rational learning, rational only asymptotically: agents use price growth observed in the past to estimate β_t

The evolution of β_t determined by learning scheme $f_t(\cdot)$

$$\Delta \beta_t = f_t \left(\frac{P_{t-1}}{P_{t-2}} - \beta_{t-1} \right)$$

$$f_t(0) = 0$$

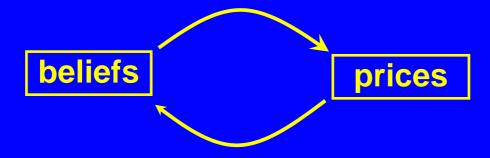
$$f'_t > 0$$

$$f_t \text{ s.t. } 0 < \beta_t < \delta^2$$

Quantitative section:

- add restrictions to have only small deviations from rationality
- will show that asymptotically rationality is obtained
- initial beliefs at the REE and
- parameterize distance of learning model from RE model

Crucial feature of learning : self-referential & dynamic



'Naturally occuring Ponzi schemes' & 'data like' behavior

II. Simplest model (learning)

Dynamics of price growth under learning:

$$P_t = \delta \widetilde{E}_t(P_{t+1}) + \delta E_t(D_{t+1}) \& \widetilde{E}_t\left[\frac{P_{t+1}}{P_t}\right] = \beta_t \implies P_t = \frac{\delta a}{1 - \delta \beta_t} D_t$$

Realized price growth:

$$\frac{P_t}{P_{t-1}} = \underbrace{\left(a + \frac{a\delta\,\Delta\beta_t}{1 - \delta\beta_t}\right)}_{=:T(\beta_t,\Delta\beta_t)} \varepsilon_t$$

Belief dynamics:

$$\Delta \beta_{t+1} = f_{t+1}(T(\beta_t, \Delta \beta_t)\varepsilon_t - \beta_t)$$

- 2nd order non-linear diff eqn: no closed form solution
- highly non-linear: T-map has asymptote at $\delta\beta_t = 1$
- beliefs dynamics <=> dynamics of PD ratio

Analytic results about belief/price dynamics:

Qualitative: illustrate potential to generate interesting data-like behavior

To show that results come from learning: deterministic dynamics ($\varepsilon_t = 1$)

II. Simplest model (learning)

(1) Around the REE: stock price changes display momentum

For all
$$0 < \beta_t < \delta^{-1}$$
: if $\Delta \beta_t > 0$, then $\frac{P_t}{P_{t-1}} > a$
if $\Delta \beta_t < 0$, then $\frac{P_t}{P_{t-1}} < a$

Momentum at the REE ('naturally occuring Ponzi scheme'):

$$\beta_t = a \text{ and } \Delta \beta_t > 0 \Rightarrow \Delta \beta_{t+1} > 0$$

 $\beta_t = a \text{ and } \Delta \beta_t < 0 \Rightarrow \Delta \beta_{t+1} < 0$

beliefs \uparrow -> price growth \uparrow -> future beliefs \uparrow

II. Simplest model (learning)

(2) Prices and beliefs display mean reversion in the long-run

For any $\eta > 0$ and *t* such that $\beta_t > a + \eta$, there is a finite *t*' such that $\beta_{t'} < a + \eta$

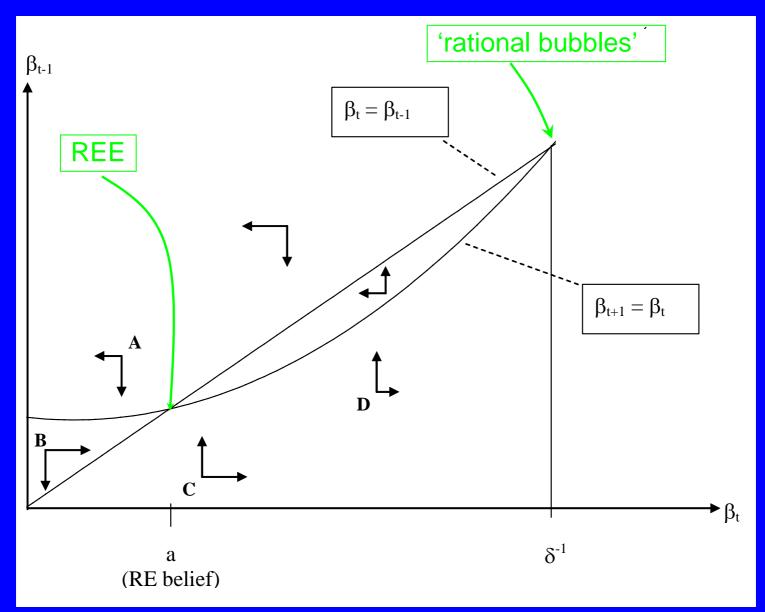
Note: β_t can be arbitrarily high & η arbitrarily small!

Similarly for low beliefs:

For any $\eta > 0$ and t such that $\beta_t < a - \eta$,

there is a finite t'' such that $\beta_{t''} > a - \eta$

Phase diagram



II. Simplest model (learning)

Momentum & mean reversion =>

- Large & persistent movements in PD ratio (Facts 1+2)
- Excess return predictability (Fact 4)
- Excess volatility (Fact 3)

$$Var\left(\ln \frac{P_t}{P_{t-1}}\right) = Var\left(\ln \frac{1-\delta\beta_{t-1}}{1-\delta\beta_t}\right) + Var\left(\ln \frac{D_t}{D_{t-1}}\right)$$

- Simulation results show: also equity premium – a surprise to us.

Combine:

 (1) Most standard pricing model: risk neutral model &
 (2) Most standard learning scheme: Ordinary least squares (OLS)

Simulate: learning dramatically improves asset price behavior!

Expectations function

$$\widetilde{E}_t \left[\frac{P_{t+1}}{P_t} \right] = \beta_t$$

Learning rule $f_t(\cdot)$:

$$\beta_t = \beta_{t-1} + \frac{1}{\alpha_t} \left[\frac{P_{t-1}}{P_{t-2}} - \beta_{t-1} \right]$$

 $\beta_0 = a$ $1/\alpha_1 \in [0, 1] \text{ given.}$ $1/\alpha_t = 1/(\alpha_{t-1} + 1) \quad t \ge 2$ PJF: no updating if implied PD>500 Similar constraints in models of Bayesian learning

Initial belief: centered at RE value Confidence in initial belief: $1/\alpha_1 = 0$: full , learning -> RE $1/\alpha 1 = 1$: none, pure OLS

 β_t : average of observed sample growth rate and α_1 'observations' of fundamental growth a

Single free parameter introduced by learning: $1/\alpha_1$

Attractive features of OLS learning setup

1. Standard & parsimonious: single free parameter $(1/\alpha_1)$

2. 'Can define small deviations from rationality'

Theorem: 'Asymptotic Rationality'

globally $\beta_t \rightarrow a$ almost sure.

 $1/\alpha_1 \rightarrow 0$: reduces to RE

3. Asymptotically learning optimal: returns are iid and OLS estimate is posterior mode of Bayesian estimate

Calibration	RE model	Learning
Mean div growth rate (a)	0.35%	idem
Std div growth rate (s)	2.98%	idem
Discount factor (δ)	0.9877	idem
Initial gain $(1/\alpha_1)$	0.00	0.02

	US Data	RE model
Statistic		
$E(r^{s})$	2.41	1.24
E (r ^b)	0.18	1.24
E(PD)	113.20	113.20
$\sigma_{r^{s}}$	11.65	3.01
σрD	52.98	0.00
ho PD,-1	0.92	-
c_2^5	-0.0048	-
R_{5}^{2}	0.1986	0.00

The equity premium...

$$\prod_{t=1}^{T} \frac{P_t + D_t}{P_{t-1}} = \prod_{t=1}^{T} \frac{D_t}{D_{t-1}} \cdot \left(\frac{PD_T + 1}{PD_0}\right) \cdot \prod_{t=1}^{T-1} \frac{PD_t + 1}{PD_t}$$
$$= R_1 = R_2 = R_3$$

R1: independent of expectations formation

R2: positive premium of $PD_T > PD_0 = PD^{RE}$, but....

R3: positive premium if on average PD<PD^{RE} under learning 'convergence from below' (as in Cogley and Sargent) convex in PD: volatility of PD helps generate equity premium

Evaluate quantitative performance of learning model

Introduce risk-aversion: match volatility in the data

Basic insight from risk-neutral version extend:

- momentum & mean reversion of beliefs/prices
- asymptotic rationality ($\beta_t \rightarrow \beta^{RE}$)
- $1/\alpha_1 \rightarrow 0$ learning model reduces to RE model

Asset pricing equation:

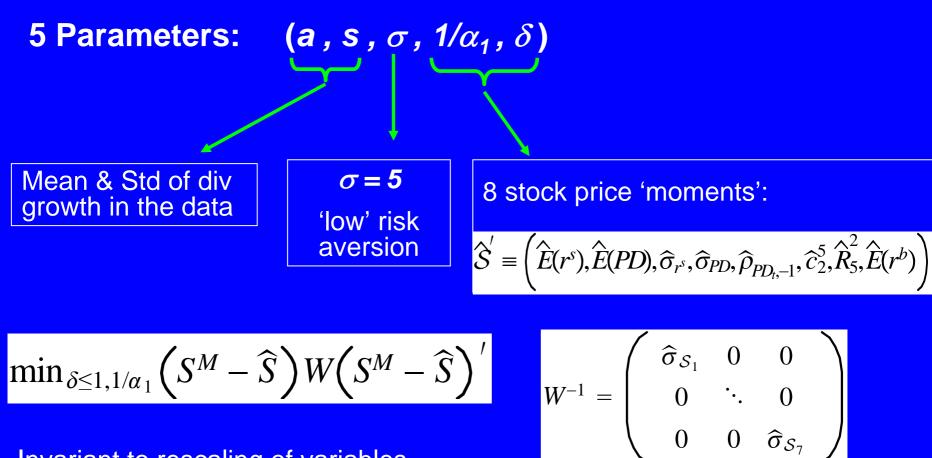
$$P_{t} = \delta \widetilde{E}_{t} \left(\left(\frac{D_{t}}{D_{t+1}} \right)^{\sigma} P_{t+1} \right) + \delta E_{t} \left(\frac{D_{t}^{\sigma}}{D_{t+1}^{\sigma-1}} \right)$$

Learning on 'risk-adjusted' price growth:

$$\widetilde{E}_t \left[\left(\frac{C_t}{C_{t+1}} \right)^{\sigma} \frac{P_{t+1}}{P_t} \right] = \beta_t$$

$$\beta_t = \beta_{t-1} + \frac{1}{\alpha_t} \left[\left(\frac{D_{t-2}}{D_{t-1}} \right)^{\sigma} \frac{P_{t-1}}{P_{t-2}} - \beta_{t-1} \right]$$

Volatility of risk-adj price growth under RE increases with σ for $\sigma > 1$



Invariant to rescaling of variables

Estimated from data, calibration literature uses model-implied std...

2 parameters

$$(rac{1}{\alpha_1},\delta)$$

8 stock price 'moments':

$$\widehat{\mathcal{S}}' \equiv \left(\widehat{E}(r^{s}), \widehat{E}(PD), \widehat{\sigma}_{r^{s}}, \widehat{\sigma}_{PD}, \widehat{\rho}_{PD_{t},-1}, \widehat{c}_{2}^{5}, \widehat{R}_{5}^{2}, \widehat{E}(r^{b})\right)$$

Criterion of fit is t-ratio:

$$\frac{\widehat{\mathcal{S}}_i - \mathcal{S}_i}{\widehat{\sigma}_{\mathcal{S}_i}}$$

Fit OK if t-ratio below 2 or 3....

	US Data	
Statistics		std
$E(r^{s})$	2.41	0.45
<i>E</i> (<i>r</i> ^{<i>b</i>})	0.18	0.23
E(PD)	113.20	15.15
σ_{r^s}	11.65	2.88
σ_{PD}	52.98	16.53
$\rho_{PD_t,-1}$	0.92	0.02
$c \frac{5}{2}$	-0.0048	0.002
R_{5}^{2}	0.1986	0.083

V. Robustness I

	US Data	Learning on Div.	
Statistic			t-ratio
$E(r^s)$	2.41	2.41	0.00
$E(r^b)$	0.18	0.48	-1.29
E(PD)	113.20	96.17	1.12
σ_{r^s}	11.65	13.23	-0.55
σ_{PD}	52.98	62.40	-0.57
$ ho_{PD_t,-1}$	0.92	0.94	-1.22
c_{2}^{5}	-0.0048	-0.0067	0.96
R_{5}^{2}	0.1986	0.2982	-1.20
Parameters:			
δ		0.999	
$1/\alpha_1$		0.015	

V. Robustness II

C = D and identified with dividends in the data

In the data C smoother than D... ...helped model matching volatility & equity premium

Now allow for C \neq D as in Campbell&Cochrane (1999)

$$\frac{C_{t+1}}{C_t} = a\varepsilon_{t+1}^c \quad \text{for} \quad \ln\varepsilon_t^c \sim iiN(-\frac{s_c^2}{2};s_c^2)$$

$$s_c = \frac{s}{7}$$
 and $\rho(\varepsilon^c, \varepsilon) = .2$

V. Robustness II

	US Data	$C \neq D$	
Statistics			t-ratio
$E(r^{s})$	2.41	2.36	0.12
<i>E</i> (<i>r</i> ^{<i>b</i>})	0.18	1.76	-6.91
E(PD)	113.20	63.56	3.28
σ_{r^s}	11.65	8.42	1.12
σрд	52.98	30.14	1.38
$\rho_{PD_t,PD_{t-1}}$	0.92	0.91	0.49
c_{2}^{5}	-0.0048	-0.0073	1.2410
R_{5}^{2}	0.1986	0.2641	-0.7911
Parameters:			
δ		1	
$1/\alpha_1$		0.0178	

V. Robustness III

Relaxing the constraint $\delta \leq 1$

	US Data	$C \neq D$	
Statistics			t-ratio
$E(r^s)$	2.41	2.01	0.89
$E(r^b)$	0.18	0.84	-2.89
E(PD)	113.20	112.85	0.02
σ_{r^s}	11.65	10.43	0.42
σ_{PD}	52.98	61.16	-0.49
$\rho_{PD_t,PD_{t-1}}$	0.92	0.95	-1.43
c_{2}^{5}	-0.0048	-0.0089	2.0440
R_{5}^{2}	0.1986	0.2397	-0.4966
Parameters:			
δ		1.00906	
$1/\alpha_1$		0.0244	

V. Conclusions

- Introducing learning into a simple asset pricing model generates a rich set of qualitatively new dynamics
- Learning induced transitional dynamics to REE allow to match evidence on
 - Mean, volatility and persistence of PD ratio
 - Stock return volatility
 - Excess return predictability
 - Equity premium
- Empirically, learning model seems more plausible than a standard RE model with similar number of parameters.

VI. Outlook

Learning model: rich interactions between asset price dynamics and aspects of the environment

- trend growth changes
- real interest rates (monetary policy)
- risk aversion

Applications of learning to other settings

- exchange rate models

Campbell & Cochrane preferences

Flow consumption utility

$$\frac{(S_t C_t)^{1-\gamma} - 1}{1 - \gamma}$$

Law of motion for surplus

$$S_{t} = \overline{S}^{1-\phi} S_{t-1}^{\phi} \left(\frac{C_{t} / C_{t-1}}{g} \right)^{\lambda(S_{t})}$$

$$\lambda(S_t) = \begin{cases} \frac{1}{\overline{S}} \sqrt{1 - 2\log(S_t / \overline{S})} - 1 & \text{for } S_t \leq S_{\max} \\ 0 & \text{otherwise} \end{cases}$$

