Expectations, Asset Prices, and Monetary Policy: The Role of Learning

Simon Gilchrist Boston University and NBER Masashi Saito Bank of Japan

November 2006

The views expressed here are those of the authors and do not necessarily reflect the official views of the Bank of Japan.

Overview

- Should monetary authority respond to asset prices?
- How does the answer depend on:
 - Presence of financing frictions (in addition to price-setting frictions)
 - Information regarding the state of technology growth
- Asset prices as an indicator, not the policy objective

This Paper

Study the performance of alternative monetary policy rules in an economy with:

- Financial market imperfections
 - Financial accelerator: Bernanke, Gertler, and Gilchrist (1999)
- Imperfect information regarding the state of technology growth
 - Transitory and persistent shocks to technology growth: Edge, Laubach, and Williams (2004), Saito (2006)
 - Perceptions about the state of technology growth determine:
 - * Market values
 - * Policymaker's inference about the potential level of asset prices and the policy stance
 - Consider identical vs. differential information between private sector and policymaker

Financial Market Imperfections: Business Cycle Implication

Provide an amplification mechanism

 Asymmetric information between lenders and borrowers→Countercyclical premium on external funds

A favorable shock

 \rightarrow Investment and asset prices increase

 $\rightarrow\! \text{Borrower's}$ net worth and balance sheet condition improve

 \rightarrow External finance premium falls

 \rightarrow *Investment and asset prices increase further*

 \rightarrow Borrower's net worth and balance sheet condition improve further

 \rightarrow ... ["financial accelerator"]

Financial Market Imperfections: Policy Implication

Introduce additional source of distortion on economic activity

- Amplification mechanism reflects a distortion
 - Excessively procyclical asset prices and investment
- Variables related to this distortion have a special role in stabilization policy
 - Asset prices: relative price of capital

Findings

- Absent financial market imperfections, a policy of responding strongly to inflation is sufficient.
 - Only one source of distortion: price-setting frictions

Findings (ctd.)

- In the presence of financial market imperfections, allowing a policy response to asset prices can be beneficial.
 - Two sources of distortion:
 - * (1) Price-setting frictions introduce distortion through time-varying markup
 - · Stabilizing inflation helps reduce this distortion
 - * (2) Financing frictions introduce distortion through time-varying premium on external funds
 - · Stabilizing asset prices around frictionless level helps reduce this distortion
 - Policy should balance the effects of two distortions:
 - * Responding only to inflation leaves a large output gap volatility
 - * Responding too strongly to asset prices destabilizes inflation

Findings (ctd.)

• Performance of a monetary policy rule depends on the information structure.

- When the central bank is fully informed about the state of technology growth, allowing a policy response to "asset price gap" is beneficial
 - * Potential is computed correctly
 - * Benefits are larger when the private sector is imperfectly informed
- When the central bank is imperfectly informed, better to use a policy that does not require inferences about the potential
 - * Rules that include asset price growth or output growth work well in reducing the distortions due to financing frictions
 - * Rules that include the level of asset prices are destabilizing in the presence of shocks affecting the potential

Model

- Key features:
 - Two sources of distortion: price-setting frictions, financing frictions
 - Information about technology growth: full vs. imperfect
- Agents:
 - Private sector: households, final goods producers, retailers, capital producers, entrepreneurs
 - Monetary authority: (Taylor) interest rate rule

Financial Market Imperfections

- Entrepreneurs produce wholesale goods using capital and labor
- Finance expenditures on capital with net worth (internal funds) and debt (external funds):

$$Q_t K_{t+1} = N_{t+1} + \frac{B_{t+1}}{P_t}$$

- Asymmetric information and costly state verification
 - Premium on external funds inversely related to entrepreneur's balance-sheet condition

Financial Market Imperfections (ctd.)

• Premium on external funds is increasing in borrower's leverage (BGG, 1999):

$$s\left(\frac{Q_t K_{t+1}}{N_{t+1}}\right) = \left(\frac{Q_t K_{t+1}}{N_{t+1}}\right)^{\chi}$$

 $\chi > 0$: Balance-sheet conditions relevant (financial market imperfections)

 $\chi = 0$: Balance-sheet conditions irrelevant (no financial market imperfections)

• Evolution of net worth:

$$N_{t+1} = \eta \left[R_t^k Q_{t-1} K_t - s \left(\frac{Q_{t-1} K_t}{N_t} \right) E_{t-1} \left[R_t^n \frac{P_{t-1}}{P_t} \right] (Q_{t-1} K_t - N_t) \right] + \frac{W_t^e}{P_t}$$

 Provides a link between asset prices, balance sheet conditions, and the external finance premium

Monetary Policy Rules

• Inflation only: $\ln R_{t+1}^n = \ln R^n + \phi_\pi \ln \pi_t$

– Weak inflation response ($\phi_{\pi}=1.1$) vs. strong inflation response ($\phi_{\pi}=2.0$)

- Asset price gap: $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t \ln Q_t^*)$
 - Q_t^* : policymaker's inference about the potential level of asset prices (in the absence of both pricing and financing frictions)
- Natural rate of interest: $\ln R_{t+1}^n = \ln R_{t+1}^* + 2.0 \ln \pi_t + \phi_Q(\ln Q_t \ln Q_t^*)$

- R_{t+1}^* : policymaker's inference about the natural rate of interest

- Asset price level: $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t \ln Q)$
- Asset price growth: $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t \ln Q_{t-1})$
- Output growth: $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Y (\ln Y_t \ln Y_{t-1} \mu)$

Two Sources of Distortion on Economic Activity

- 1. Price-setting frictions: introduce fluctuations in markup
- 2. Financing frictions: introduce fluctuations in external finance premium
- Variations in \widetilde{mc}_t (inverse of markup) and \widetilde{s}_t (premium) work as "tax wedges":

(1) Labor market:

$$\widetilde{y}_t + \widetilde{mc}_t - \widetilde{c}_t = (1+\gamma)\widetilde{h}_t$$

(2) Capital market:

$$\widetilde{s}_t + \widetilde{r}_{t+1}^n - E_t \widetilde{\pi}_{t+1} = \left(1 - \frac{1 - \delta}{R^k}\right) \left(E_t \widetilde{y}_{t+1} - \widetilde{k}_{t+1} + E_t \widetilde{z}_{t+1} + E_t \widetilde{mc}_{t+1}\right) \\ + \frac{1 - \delta}{R^k} \left(E_t \widetilde{q}_{t+1} - \widetilde{q}_t\right)$$

Monetary Policy in the Presence of Two Distortions

• 1. Stabilize inflation

 \rightarrow Stabilize markup

 $\rightarrow \! \mathsf{Reduce}$ distortions due to price-setting frictions

• 2. Stabilize "excessive" asset price movements

 ${\rightarrow} Stabilize$ the external finance premium

 $\rightarrow \! \mathsf{Reduce}$ distortions due to financing frictions

• Rationale:

- 1. 'Stabilize nominal prices that are sticky'
- 2. Stabilize relative price related to distortion

Complications

• Stabilizing nominal-price inflation does not necessarily ensure "efficient" level of relative price (asset prices) in the presence of two distortions

- Two distortions, one policy instrument

- Not all the asset price movements are inefficient
 - Policymaker must make inference
 - We assume that the central bank can solve a frictionless model to compute the potential level of asset prices, but may do so under imperfect information regarding the state of technology growth

Transitory and Persistent Movements in Technology Growth

• Two sources of variations in technology growth:

$$\ln A_t = \ln A_{t-1} + \mu_t + \varepsilon_t$$

where A_t : technology in period t

• Persistent component is AR(1):

$$egin{array}{rl} (\mu_t-\mu) &=&
ho_d(\mu_{t-1}-\mu)+v_t \ v_t &\sim& i.i.d.N(\mathbf{0},\sigma_v^2) \end{array}$$

• Transitory component is *i.i.d*.:

$$\varepsilon_t \sim i.i.d.N(\mathbf{0}, \sigma_{\varepsilon}^2)$$

Information Structures

• Full Information: observe two shocks (μ_t, ε_t) separately

- state is (μ_t, ε_t)

- Imperfect Information: observe technology (A_t) but not the two shocks (μ_t, ε_t)
 - state is inference about (μ_t, ε_t)
- Based on available information:
 - Private sector optimizes
 - Central bank computes (Q_t^*, R_{t+1}^*) : inputs for policy
- Case of identical vs. differential information between private sector and policymaker
- Assumption: monetary authority's information affects the private sector's decisions through changes in the policy interest rate, but not their *inferences* regarding shocks

Optimal Inference Under Imperfect Information

• Let percentage deviation from mean technology growth μ :

$$\begin{aligned} &\widetilde{z}_t &\equiv \ln A_t - \ln A_{t-1} - \mu \\ &\widetilde{d}_t &\equiv \mu_t - \mu \end{aligned}$$

• Rewrite the technology growth process:

$$\begin{split} \widetilde{z}_t &= \widetilde{d}_t + \varepsilon_t \\ \widetilde{d}_t &= \rho_d \widetilde{d}_{t-1} + \nu_t \\ v_t &\sim i.i.d.N(\mathbf{0}, \sigma_v^2) \\ \varepsilon_t &\sim i.i.d.N(\mathbf{0}, \sigma_\varepsilon^2) \end{split}$$

• Optimal inference about \tilde{d}_t based on observations $(\tilde{z}_t, \tilde{z}_{t-1}, \tilde{z}_{t-2}, ...)$ and the knowledge of $(\rho_d, \sigma_v^2, \sigma_\varepsilon^2)$:

$$\widetilde{d}_{t|t} = \lambda \widetilde{z}_t + (1 - \lambda)
ho_d \widetilde{d}_{t-1|t-1}$$

where $\tilde{d}_{t|t} \equiv E[\tilde{d}_t | \ \tilde{z}_t, \tilde{z}_{t-1}, \tilde{z}_{t-2}, ...]$, Kalman gain λ increasing in $\frac{\sigma_v^2}{\sigma_\varepsilon^2}$ and ρ

Changes in Inferences After a Transitory Shock

---: Actual persistent component of technology growth $ig(\widetilde{d}_tig)$

——: Inferred persistent component of technology growth $ig(\widetilde{d}_{t|t}ig)$

Changes in Inferences After a Persistent Shock

---: **Actual** persistent component of technology growth (\tilde{d}_t)

——: Inferred persistent component of technology growth $ig(\widetilde{d}_{t|t}ig)$

Calibration

Preferences, Technology, and Price-Setting

Discount factor	0.984
Labor share of income	0.667
Labor supply elasticity	1.25
Depreciation rate of capital	2.5%
Elasticity of asset prices to investment	0.25
Steady-state markup	10%
Average duration of prices	4 quarters

Financial Market Imperfections

Steady-state leverage ratio	30%
Elasticity of the external finance premium to leverage 0).05
\implies Implies a steady-state external finance premium of 3%	
Increasing these enhances the financial accelerator mechan	nism.

Shock Process and Filtering

std of shocks to the transitory component	1%
std of shocks to the persistent component	0.1%
AR(1) coefficient on the persistent component	0.95
\implies Implies a Kalman gain of $\lambda = 0.06138$	
Agents initially attach a large weight on the transitory s	shock.

Model Properties

Compare economic outcomes under:

(1) Frictionless economy with full information:

No price-setting frictions ($\widetilde{mc}_t = 0$), no financing frictions ($\widetilde{s}_t = 0$)

(2) Policy with weak response to inflation:

 $\ln R_{t+1}^n = \ln R^n + 1.1 \ln \pi_t$

(3) Policy with strong response to inflation:

$$\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t$$

(4) Policy with asset price gap on top of (3):

$$\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + 1.5 (\ln Q_t - \ln Q_t^*)$$

Transitory Shock: Full Info, Pricing Friction Only

Transitory Shock: Full Info, Both Frictions

Persistent Shock: Full Info, Pricing Friction Only

Persistent Shock: Full Info, Both Frictions

Performance of Monetary Policy Rules

• Evaluate economic outcomes with:

 $var(\ln \pi_t)$

 $var\left(\ln Y_t - \ln Y^*_{full,t}\right)$

Equal-weighted loss: $0.5var(\ln \pi_t) + 0.5var(\ln Y_t - \ln Y_{full,t}^*)$

• $Y^*_{full,t} \equiv$ output in the absence of both price-setting and financial frictions and under full information

Policy Rule with Inflation Only

 $\ln R_{t+1}^n = \ln R^n + \phi_\pi \ln \pi_t$

	Pricing friction only			Bot	Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss		
Full informat	tion for the priv	ate sector						
$\phi_{\pi}=$ 1.1	0.431	2.811	1.621	1.923	3.022	2.473		
$\phi_{\pi}=$ 2.0	0.006	0.044	0.025	0.470	0.056	0.263		
Imperfect inf	formation for th	e private sec	ctor					
$\phi_{\pi}=$ 1.1	0.579	2.103	1.341	2.247	2.265	2.256		
$\phi_{\pi}=$ 2.0	0.099	0.028	0.063	0.870	0.045	0.458		

Gains from Allowing Policy Response to Other Variables

• **Relative gain** from using Policy Rule *x*:

 $\frac{|loss(weak inflation response) - loss(Policy Rule x)}{|loss(weak inflation response) - loss(strong inflation response)|}$

• Interpretation:

If **Relative gain** > 1, Policy Rule x is better than "strong inflation response"

If **Relative gain** < 0, Policy Rule x is worse than "weak inflation response"

Including Asset Price Gap: (1) Full Information for the Private Sector

 $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q(\ln Q_t - \ln Q_t^*)$

	Pricing	friction only			Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	-	var(Y gap)	$var(\ln \pi)$	Loss	
Full informati	on for the polic	cymaker						
$\phi_Q=$ 0.1	1.00	1.00	1.00		1.03	1.01	1.01	
$\phi_Q^{-}=$ 1.0	1.00	1.00	1.00		1.13	0.98	1.03	
$\phi_Q^{}=$ 2.0	1.01	1.00	1.00		1.22	0.92	1.02	
Imperfect info	ormation for the	e policymake	er					
$\phi_Q=$ 0.1	0.98	1.00	1.00		1.02	1.01	1.01	
$\phi_Q^{-}=$ 1.0	0.59	0.99	0.94		0.93	0.98	0.97	
$\dot{\phi_{Q}} = 2.0$	0.21	1.00	0.90		0.79	0.88	0.85	

Including Asset Price Gap: (2) Imperfect Information for the Private Sector

 $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q(\ln Q_t - \ln Q_t^*)$

	Pricing	friction only		Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	 $var(Y \ gap)$	$var(\ln \pi)$	Loss	
Full Informati	ion for the polic	cymaker					
$\phi_Q=$ 0.1	1.02	1.00	1.00	1.09	1.00	1.04	
$\phi_Q = 1.0$	1.12	0.99	1.01	1.50	0.98	1.18	
$\phi_Q^{-}=$ 2.0	0.97	0.99	0.99	1.53	0.86	1.12	
Imperfect Info	ormation for the	e policymake	er				
$\phi_Q=$ 0.1	0.92	1.00	0.98	1.20	1.01	1.08	
$\phi_Q =$ 1.0	0.96	1.00	0.99	1.38	0.97	1.12	
$\phi_Q^{-}=$ 2.0	0.96	1.00	1.00	1.42	0.87	1.08	

Policy Rule without Central Bank's Inferences: (1) Full Information for the Private Sector

	Pricing friction only			Both frictions		
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss
Output grow	vth: $\ln R_{t+1}^n =$	$\ln R^n + 2.0$) In $\pi_t + \phi$	$_Y(\ln Y_t - \ln Y_{t-1})$	$(-\mu)$	
$\phi_Y = 0.1$	0.99	1.00	1.00	1.03	1.01	1.01
$\phi_Y = $ 1.0	0.57	1.00	0.95	1.04	1.01	1.02
$\phi_Y=$ 2.0	-0.05	0.94	0.81	0.83	0.95	0.91
Asset price	growth: $\ln R_{t+1}^n$	$_1 = \ln R^n +$	- 2.0 ln π_t	$+\phi_Q(\ln Q_t - \ln$	$\overline{Q_{t-1}}$)	
$\phi_Q=$ 0.1	1.00	1.00	1.00	1.07	1.00	1.02
$\phi_Q^{}=$ 1.0	0.87	1.00	0.99	1.04	1.00	1.02
$\phi_Q^{*}=$ 2.0	0.69	1.00	0.96	0.96	1.00	0.99
Asset price	level: In R_{t+1}^n =	$= \ln R^n + 2$.0 ln π_t +	$\phi_Q(\ln Q_t - \ln Q)$		
$\phi_Q=$ 0.1	0.99	1.01	1.00	1.01	1.01	1.01
$\dot{\phi_Q}=1.0$	0.13	-0.01	0.00	1.05	-0.31	0.13
$\phi_Q^{}=$ 2.0	-2.16	-3.60	-3.41	0.71	-4.18	-2.57

Policy Rule without Central Bank's Inferences: (2) Imperfect Information for the Private Sector

	Pricing friction only			Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	$var(Y \ gap)$	$var(\ln \pi)$	Loss	
Output grow	wth: $\ln R_{t+1}^n =$	$\ln R^n + 2.0$	$\ln \pi_t + \phi$	$p_Y(\ln Y_t - \ln Y_{t-t})$	$(-1 - \mu)$		
$\phi_Y=$ 0.1	0.97	1.00	1.00	1.20	1.01	1.08	
$\phi_Y=$ 1.0	0.74	1.00	0.95	1.40	1.01	1.16	
$\phi_Y=$ 2.0	0.33	0.90	0.79	1.37	0.92	1.24	
Asset price	growth: $\ln R_{t+}^n$	$\frac{1}{1} = \ln R^n + \frac{1}{2}$	- 2.0 ln π_t	$+\phi_Q(\ln Q_t - \ln Q_t)$	ו Q_{t-1})		
$\phi_Q=$ 0.1	0.95	1.00	0.99	1.11	1.00	1.05	
$\phi_Q = 1.0$	0.96	1.00	0.99	1.33	1.00	1.13	
$\phi_Q^{}=$ 2.0	0.98	1.00	0.99	1.39	1.00	1.15	
Asset price	level: ln R_{t+1}^n =	$= \ln R^n + 2$.0 ln π_t +	$\phi_Q(\ln Q_t - \ln Q_t)$?)		
$\phi_Q=$ 0.1	0.96	1.01	1.00	1.21	1.02	1.09	
$\dot{\phi_Q} = 1.0$	0.49	-0.65	-0.44	1.52	-0.80	0.09	
$\phi_Q^{-}=$ 2.0	-0.78	-4.54	-3.83	1.30	-5.42	-2.85	

Conclusions

- Absent financial market imperfections, a policy of responding strongly to inflation is sufficient
- Financial market imperfections introduce additional distortion
 - Allowing a *modest* policy response to asset prices *can* be beneficial
 - * Responding to the asset price gap is beneficial when central bank computes the potential correctly
 - Benefits are larger when the private sector is imperfectly informed about the state of technology growth
 - Policy rule that includes the growth rate of asset prices or output are robust to incorrect inferences and work well in reducing the distortion due to financing frictions
 - * Policy rule with asset price level shows worst performance in the presence of shocks affecting the potential

Directions

• Asset price dynamics

- Wage stickiness helps a model to generate procyclical asset price movements in response to persistent growth shocks
- Welfare analysis
 - Ramsey policy, higher-order approximations
- Analysis with estimated model
 - Relative importance of alternative shocks and frictions/wedges
 - Financial market developments, changes in propagation/transmission mechanism over time
- Central bank's learning from asset price movements regarding the state of technology growth

Additional slides

Persistent Shock: Imperfect Info, Pricing Friction Only

Persistent Shock: Imperfect Info, Both Frictions

Robustness to Including Natural Rate: (1) Full Information for the Private Sector

$$\ln R_{t+1}^n = \ln R_{t+1}^* + 2.0 \ln \pi_t + \phi_Q (\ln Q_t - \ln Q_t^*)$$

(Change in relative gain starting from $\phi_Q = 0$)

	Pricing friction only				Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	va	$ar(Y \ gap)$	$var(\ln \pi)$	Loss	
Full informat	ion for the polic	cymaker						
$\phi_Q=$ 0.1	0.00	0.00	0.00		0.02	0.00	0.01	
$\phi_Q^{-}=$ 1.0	0.00	0.00	0.00		0.11	-0.04	0.01	
$\phi_Q^{-}=$ 2.0	0.00	0.00	0.00		0.16	-0.14	-0.04	
Imperfect info	ormation for the	e policymake	er					
$\phi_Q=$ 0.1	-0.01	0.00	0.00		-0.03	0.04	-0.01	
$\phi_Q^{}=$ 1.0	-0.40	-0.01	-0.06		-0.08	0.00	-0.05	
$\phi_Q^{-}=$ 2.0	-0.89	0.00	-0.12		-0.20	-0.11	-0.16	

Robustness to Including Natural Rate: (2) Imperfect Information for the Private Sector

$$\ln R_{t+1}^n = \ln R_{t+1}^* + 2.0 \ln \pi_t + \phi_Q (\ln Q_t - \ln Q_t^*)$$

(Change in relative gain starting from $\phi_Q = 0$)

	Pricing friction only			Both frictions			
	var(Y gap)	$var(\ln \pi)$	Loss	var	$(Y \ gap)$	$var(\ln \pi)$	Loss
Full informati	ion for the polic	cymaker					
$\phi_Q=$ 0.1	0.00	0.00	0.00		0.02	0.00	0.01
$\phi_Q^{}=$ 1.0	0.00	0.00	0.00		0.11	-0.04	0.01
$\phi_Q^{}=$ 2.0	0.00	0.00	0.00		0.16	-0.04	-0.04
Imperfect info	ormation for the	e policymake	er				
$\phi_Q=$ 0.1	0.02	0.00	0.01		0.07	0.00	0.02
$\phi_Q^{}=$ 1.0	-0.03	0.00	0.00		0.20	-0.07	0.03
$\dot{\phi_Q}=$ 2.0	-0.02	0.00	0.00		0.24	-0.16	-0.01