How Important are Financial Frictions in the US and the Euro Area?

Virginia Queijo von Heideken

November 2nd, 2006

Bank of Finland/CEPR

Purpose of the paper

- ◆ Are frictions in credit markets important for business cycles?
- ◆ Is the magnitude of financial frictions similar in the US and the Euro area?

Results

- ◆ Financial frictions help to explain business cycle fluctuations in both areas
- ◆ The size of these frictions is larger in the Euro area

Financial Frictions

- ◆ Inefficiencies in financial markets which affect the supply of credit and amplify business cycles
- ◆ Financial accelerator: Bernanke, Gertler and Gilchrist, 1999 (BGG)
- A mechanism based on information asymmetries between lenders and entrepreneurs
- Generates a negative relation between external financial premium and net worth

Related Literature

- ◆ Theoretical papers: BGG, Christiano-Motto-Rostagno (2003)
- ◆ Empirical studies:
- Christiano-Motto-Rostagno (2003): calibrate
- Christensen-Dib (2004), Neri (2004), Meier-Muller (2005): simpler model for US
- Levin-Natalucci-Zakrajsek (2004): micro-data

My Contribution

- ◆ Theoretical: put together a DSGE model with credit frictions
- ◆ Empirical:
- Estimate financial frictions using both US and European data
- Bayesian methods
- Identify structural parameters that underpin the financial contract

Outline

- ◆ The Model
- ◆ Estimation Methodology
- **♦** Results
- **♦** Conclusions

The Model

- ◆ (Standard) DSGE model + financial frictions
- ◆ Agents:
 - Households
 - Final good sector
 - Intermediate good sector
 - Capital Producers
 - Entrepreneurs
 - Financial Intermediaries
 - Government

Households

- ◆ Consume (external habit formation)
- ♦ Allocate wealth between real deposits $(d_{j,t})$ and nominal bonds $(b_{j,t}^n)$
- ◆ Supply a specialized labor input, l_{jt}
- ◆ Monopolistically set wages with Calvo-type frictions, if cannot reoptimize:

$$w_{j,t+1} = \pi_t w_{j,t}$$

Final Good Firms

- ◆ Perfectly competitive firms
- lacktriangle Combine a continuum of intermediate goods $y_{s,t}$ using a Dixit-Stiglitz aggregator

Intermediate Good Firms

- Monopolistically competitive firms
- ◆ Hire the services of capital and labor
- Production function of the firm s: $y_{s,t} = a_t k_{s,t}^{\alpha} l_{s,t}^{1-\alpha}$,
- ◆ Set prices subject to Calvo-style frictions with indexation

$$\widehat{\boldsymbol{\pi}}_{t} = \frac{\widehat{\boldsymbol{\pi}}_{t-1}}{(1+\beta)} + \frac{\beta}{(1+\beta)} E_{t} \widehat{\boldsymbol{\pi}}_{t+1} + \frac{(1-\theta)(1-\beta\theta)}{(1+\beta)\theta} \widehat{\boldsymbol{s}}_{t} + \frac{(1-\theta)(1-\beta\theta)}{(1+\beta)\theta} \frac{\lambda}{(\lambda+1)} \widehat{\boldsymbol{\lambda}}_{t}.$$

Capital Producers

◆ Produce capital with increasing marginal adjustment costs

$$\max_{i_{t+1}^{j}} E_{t} \left[q_{t+1} \Phi \left(\frac{i_{t+1}^{j}}{\tilde{k}_{t+1}^{j}} \right) \tilde{k}_{t+1}^{j} - i_{t+1}^{j} \right]$$

Entrepreneurs

End of period t: Buy capital

$$q_{t}\widetilde{k}_{t+1}^{i} = n_{t+1}^{i} + b_{t+1}^{i}$$
.

- The ex post return on capital is $\omega^i r^k$
- ♦ Agency costs: μ % gross return of the firm
- ◆ Optimal contract

Period t+1: Choose the level of capital utilization

Monetary Policy

◆ The Central Bank policy rule is a Taylor type rule of the form

$$\widehat{r}_t^n = \rho^r \widehat{r}_{t-1}^n + (1 - \rho^r) (\gamma^{\pi} E \widehat{\pi}_{t+1}) + (1 - \rho^r) (\gamma^y \widehat{y}_t) / 4 + \widehat{\varepsilon}_t^r.$$

Market Clearing Condition

$$y_{t} = c_{t} + i_{t} + g_{t} + \mu \int_{0}^{\overline{\omega}_{t}} \omega dF(\omega) r_{t}^{k} q_{t-1} \widetilde{k}_{t}$$

 \bullet g_t : government consumption modeled as AR(1) process

◆ Last term: loss in monitoring costs associated with defaulting entrepreneurs

Exogenous Shocks

```
\begin{array}{lll} \varepsilon_{\mathrm{t}} & \mathrm{monetary\ shock} \\ \lambda_{\mathrm{t}} & \mathrm{price\ mark\ up\ shock} \\ \tau_{\mathrm{t}} & \mathrm{wage\ mark\ up\ shock} \\ \xi_{\mathrm{t}} & \mathrm{labor\ supply\ shock} \\ \upsilon_{\mathrm{t}} & \mathrm{consumer\ preferences\ shock} \\ g_{\mathrm{t}} & \mathrm{government\ expenditure\ shock} \\ a_{\mathrm{t}} & \mathrm{technology\ shock} \\ \end{array}
```

lacktriangle The last 4 modeled as AR(1)

Model Solution

- ◆ Loglinearization of the model around the non stochastic steady state
- ◆ The solution has a linear structure

$$X_t = GX_{t-1} + Q\Psi_t$$

Estimation Methodology

- ◆ 30 free parameters in the model
- ◆ 7 are calibrated while the other are estimated using Bayesian Methods

$oldsymbol{eta}$	Discount factor	0.99
δ	Depreciation in SS	0.025
g/y	Gov-output ratio in SS	19.5
$F(\varpi)$	SS probability of default	0.0075
α	Cobb-Douglas	0.33
λ	SS price mark up	0.20
τ	SS wage mark up	0.05

Bayesian Estimation

- ◆ Advantages relative to MLE
- ◆ Likelihood + Priors

Data

- ◆ 7 observables: output, consumption, investment, hours, nominal interest rate, inflation and real wages
- no financial data
- ◆ U.S.: quarterly detrended data from 1980:I to 2004:I
- ◆ Euro Area: quarterly detrended data from 1980:I to 2002:4

Table 1-B: Prior and Posterior Distribution of the Parameters

Parameter	Prior			U.S. Posterior		
	Type	Mode	St. Error	5%	Mean	95%
γ^π Coef. inflation in monetary rule	Normal	1.50	0.05	1.542	1.614	1.687
γ^y Coef. output in monetary rule	Normal	0.50	0.05	0.157	0.240	0.322
σ risk aversion	Normal	1.00	0.10	0.984	1.110	1.227
heta prob. of not adj. prices	Beta	0.70	0.05	0.758	0.782	0.804
arphi elasticity of capital price wrt I/K	Uniform	-0.5*	0.29	-0.578	-0.475	-0.386
γ Entrepreneurs rate of survival	Beta	.975	0.01	0.985	0.991	0.995
μ Monitoring costs	Beta	0.12	0.05	0.083	0.119	0.158
r^k-r Risk premium	Gamma	0.005	0.002	0.004	0.006	0.008
artheta prob. of not adj. wages	Beta	0.70	0.05	0.174	0.208	0.243
h Habit formation	Beta	0.70	0.05	0.548	0.604	0.659
δ''/δ' Variable dep. parameter	Gamma	1.00	0.05	0.939	1.020	1.106

US Data

Prior and posterior distribution for the benchmark model

Robustness and Model Comparison

- ◆ To check robustness and the relevance of the financial accelerator:
- standard BGG model
- price indexation to past inflation
- sticky wages
- consumption habits
- variable capital utilization
- Bayesian model selection: $BF_{ij} = p(Y|M_i)/p(Y|M_j)$
- ◆ Marginal likelihood approximated with modified harmonic mean

US data

Parameter	BGG	Model	Benchmark		
	FA	no FA	FA	No FA	
γ^{π} Coef. inflation in monetary rule	1.287	1.719	1.614	1.637	
γ^y Coef. output in monetary rule	0.140	0.061	0.240	0.198	
σ risk aversion	1.134	1.227	1.110	1.100	
heta prob. of not adj. prices	0.700	0.710	0.782	0.759	
arphi elasticity of capital price wrt I/K	-0.100	-0.078	-0.475	-0.220	
γ Entrepreneurs rate of survival	0.989	0.972	0.991	0.971	
μ Monitoring costs	0.222	-	0.119	-	
$r^k - r$ Risk premium	0.012	-	0.006	-	
artheta prob. of not adj. wages	-	-	0.208	0.186	
h Habit formation	-	-	0.604	0.661	
δ''/δ' Variable dep. parameter	-	-	1.020	1.005	
Log Bayes Factor	0	121.3	0	50.5	

Results: European Data

- ◆ Bayes factor favors financial frictions in all 5 specifications
- ◆ Posterior distribution similar to the US: the shocks driving the economy and the transmission mechanisms are not too different
- ◆ Some exceptions:
- higher monitoring costs (18%)
- higher capital adjustment costs
- smaller monetary policy shocks
- higher price stickiness (6 quarters)

IRFs to a one percent shock to the nominal interest rate (annual) for the benchmark model evaluated at the posterior mean. Blue line: U.S. data. Red line: European data.

Discussion

- ◆ After a monetary policy shock, the response of the observables variables is the same with higher financial frictions and higher adjustment costs of capital
- ◆ The model is not able to explain the "output composition puzzle" (Angeloni et al. 2003)
- ◆ What about other shocks?

Counterfactual: IRFs to a one std. dev. preference shock for the benchmark model evaluated at the posterior mean. Blue line: U.S. data. Red line: U.S. data using credit market frictions and investment adjustment costs as in the Euro area.

Counterfactual: IRFs to a one std. dev. shock to productivity for the benchmark model evaluated at the posterior mean. Blue line: U.S. data. Red line: U.S. data using credit market frictions and investment adjustment costs as in the Euro area.

Conclusion

- ◆ Financial frictions are relevant in both areas
- ◆ The size of the frictions is larger in the Euro area
- ◆ The main differences are after preference and technology shocks

Road Ahead

- ◆ Compare with a reference model
- Use financial data: $F(\omega)$
- ◆ Introduce investment shocks
- lacktriangle Estimate breaks in μ in the Euro area