DISCUSSION Expectations, Asset Prices and Monetary Policy: the Role of Learning Simon Gilchrist and Masashi Saito

Discussant: Andrea Pescatori

Federal Reserve Bank of Cleveland and Universitat Pompeu Fabra

2/11/2006

Narrowing down:

► Asset Prices: Equity prices.

Focus

Narrowing down:

- ► Asset Prices: Equity prices.
- Credit Frictions: at Firms Level.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Focus

Narrowing down:

- Asset Prices: Equity prices.
- Credit Frictions: at Firms Level.
- ▶ No (direct) wealth effect on consumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Relative Price Dispersion

Relative Price Dispersion \longrightarrow Consumption-Leisure Margin

(ロ)、(型)、(E)、(E)、 E) の(の)

Relative Price Dispersion \longrightarrow Consumption-Leisure Margin

(ロ)、

Agency Costs

- Agency Costs \longrightarrow Consumption-Investment Margin

・ロト・日本・モート モー うへぐ

- Agency Costs \longrightarrow Consumption-Investment Margin

・ロト・日本・モート モー うへぐ

Adj. Costs Investment

- Relative Price Dispersion \longrightarrow Consumption-Leisure Margin
- Agency Costs \longrightarrow Consumption-Investment Margin

・ロト・日本・モート モー うへぐ

Adj. Costs Investment $\longrightarrow Q_t \neq 1$

- Relative Price Dispersion \longrightarrow Consumption-Leisure Margin
- Agency Costs
- → Consumption-Investment Margin

・ロト・日本・モート モー うへぐ

- Adj. Costs Investment $\longrightarrow Q_t \neq 1$
- On top of . . .

- Relative Price Dispersion
- Agency Costs
- Adj. Costs Investment
- On top of . . .

- $\longrightarrow \ \ Consumption-Leisure \ Margin$
- $\longrightarrow \ \ Consumption-Investment \ Margin$

・ロト・日本・モート モー うへぐ

- $\longrightarrow Q_t \neq 1$
 - $\longrightarrow \ \ On \ top \ of \ . \ .$

- Relative Price Dispersion \longrightarrow Consumption-Leisure Margin
- Agency Costs \longrightarrow Consumption-Investment Margin

・ロト・日本・モート モー うへぐ

Adj. Costs Investment $\longrightarrow Q_t \neq 1$

On top of . . . \longrightarrow On top of . .

1. Borrowers (Impatient Entrepreneur) Net Worth N

- 1. Borrowers (Impatient Entrepreneur) Net Worth N
- 2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

・ロト・日本・モート モー うへぐ

1. Borrowers (Impatient Entrepreneur) Net Worth N

2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

current N (state) \Downarrow

1. Borrowers (Impatient Entrepreneur) Net Worth N

2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

current N (state) \downarrow s \uparrow

1. Borrowers (Impatient Entrepreneur) Net Worth N

2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

1. Borrowers (Impatient Entrepreneur) Net Worth N

2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

1. Borrowers (Impatient Entrepreneur) Net Worth N

2. Distortion-2 \longrightarrow External Finance Premium $s \propto N^{-1}$.

```
ASSET PRICES Q

\downarrow

current N (state)

\downarrow

s

\uparrow

Aggregate Demand: I

\uparrow

Y and \Pi
```

if N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

if *N* **Procyclical** ↓

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

if *N* Procyclical ↓↓ *s* is Countercyclical ↓

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

if *N* **Procyclical** $\downarrow \downarrow$ *s* is **Countercyclical** \uparrow Aggregate Demand: *I* \uparrow *Y* and Π

if *N* **Procyclical** $\downarrow \downarrow$ *s* is **Countercyclical** \uparrow Aggregate Demand: *I* \uparrow *Y* and Π

ASSET PRICES Q

if *N* **Procyclical** \downarrow *s* is **Countercyclical** \uparrow Aggregate Demand: *I* \uparrow *Y* and Π ASSET PRICES Q positive relation (unexpected movements...)

if *N* **Procyclical** $\downarrow \downarrow$ *s* is **Countercyclical** \uparrow Aggregate Demand: *I* \uparrow *Y* and Π ASSET PRICES Qpositive relation (unexpected movements...)

Profits (Productivity)

if N **Procyclical** $\downarrow \downarrow$ s is **Countercyclical** \uparrow Aggregate Demand: I $\downarrow \downarrow$ Y and Π ASSET PRICES Qpositive relation (unexpected movements...) Profits (Productivity)

Stabilizing Q contributes to stabilizing I and Y ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES Q

positive relation (unexpected movements...)

Profits (Productivity)

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES $S \neq Q$ positive relation (unexpected movements...)

Profits (Productivity)

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES $S \neq Q$ positive relation (unexpected movements...)

Profits (Productivity)

Stabilizing S contributes to stabilizing I and Y

Mechanism underlying Financial Accelerator - BG, Cecch et al. ...

 Bubble in itself not harmful (you know it is a bubble but you buy it)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mechanism underlying Financial Accelerator - BG, Cecch et al. ...

 Bubble in itself not harmful (you know it is a bubble but you buy it)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

However It Magnifies accelerator

Mechanism underlying Financial Accelerator - BG, Cecch et al. ...

 Bubble in itself not harmful (you know it is a bubble but you buy it)

- However It Magnifies accelerator
- Present Paper: Expectations for some periods systematically wrong

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES Q positive relation (unexpected movements...)

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES Q positive relation (unexpected movements...)

 $R_t^k - E_{t-1}R_t^k$

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES Q positive relation (unexpected movements...)

 $R_t^k - E_{t-1}R_t^k$

 $A_t - E_{t-1}A_t$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

N Procyclical ↓ s Countercyclical ↓ Aggregate Demand: I ↓ Y and Π ASSET PRICES Q positive relation (unexpected movements...)

 $R_t^k - E_{t-1}R_t^k$

 $A_t - E_{t-1}A_t$

Stabilizing & contributes to stabilizing I and Y

Separation Principle holds

Separation Principle holds

 optimization and signal-extraction problem treated as separate problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separation Principle holds

- optimization and signal-extraction problem treated as separate problems
- Monetary Rule and Loss Function do NOT affect filtering problem of private sector.

Separation Principle holds

- optimization and signal-extraction problem treated as separate problems
- Monetary Rule and Loss Function do NOT affect filtering problem of private sector.
- the optimal policy under commitment given an estimate of the state of the economy is 1) independent of the degree of uncertainty and so 2) the same policy as under full information.

Separation Principle holds

- optimization and signal-extraction problem treated as separate problems
- Monetary Rule and Loss Function do NOT affect filtering problem of private sector.
- the optimal policy under commitment given an estimate of the state of the economy is 1) independent of the degree of uncertainty and so 2) the same policy as under full information.

No substantial difference from having baseline setup (GL02) exogenous bubble (BG01) and learning.

A Quantitative Problem

No "Monotonic" Trade-off between Inflation and Financial Distortions ... No Perfect Coincidence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Richer model (sticky wages?)

- 1. Richer model (sticky wages?)
- 2. non-homogenous capital?: $Q^{mrg} \neq Q^{avg}$ e.g. Embedded Technology / Oil : move opposite directions

- 1. Richer model (sticky wages?)
- 2. non-homogenous capital?: $Q^{mrg} \neq Q^{avg}$ e.g. Embedded Technology / Oil : move opposite directions

3. How Reasonable is the Loss Function?

- 1. Richer model (sticky wages?)
- 2. non-homogenous capital?: $Q^{mrg} \neq Q^{avg}$ e.g. Embedded Technology / Oil : move opposite directions

3. How Reasonable is the Loss Function?

Table 3: Policy Rule with the Asset Price Gap
(Imperfect Information for the Private Sector)
$\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t - \ln Q_t^*)$

	No Financ	ial Accelera	ator	Financial Accelerator		
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss
Full Informe	ation for the H	Policy Make	r		\land	
$\phi_Q = 0.1$	1.02	1.00	1.00	1.09	1.00	1.04
$\phi_Q = 0.5$	1.12	0.99	1.01	1.36	1.00	1.14
$\phi_Q = 1.0$	1.12	0.99	1.01	1.50	0.98	1.18
$\dot{\phi_Q} = 1.5$	1.06	0.99	1.00	1.51	0.93	1.16
$\dot{\phi_Q} = 2.0$	0.97	0.99	0.99	1.53	0.86	1.12
Imperfect In	formation for	the Policy	Maker		\bigcirc	
$\phi_{Q} = 0.1$	0.92	1.00	0.98	1.20	1.01	1.08
$\tilde{\phi_Q} = 0.5$	0.94	1.00	0.99	1.22	1.01	1.09
$\dot{\phi_Q} = 1.0$	0.96	1.00	0.99	1.38	0.97	1.12
$\tilde{\phi_{O}} = 1.5$	0.98	1.00	1.00	1.44	0.93	1.12
$\tilde{\phi_Q} = 2.0$	0.96	1.00	1.00	1.42	0.87	1.08

Notes:

1. Y gap $\equiv (\ln Y - \ln Y_{full}^*)$ where Y_{full}^* is the flexible-price equilibrium level of output in the absence of financial frictions and under full information. The loss is defined as $0.5var (Y \text{ gap}) + 0.5var (\ln \pi)$.

Table 3: Policy Rule with the Asset Price Gap (Imperfect Information for the Private Sector) $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t - \ln Q_t^*)$

	No Financial Accelerator			Financia	or /	
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss
Full Informe	ation for the H	Policy Make	r		\land	
$\phi_Q = 0.1$	1.02	1.00	1.00	1.09	1.00	1.04
$\phi_Q = 0.5$	1.12	0.99	1.01	1.36	1.00	1.14
$\phi_Q = 1.0$	1.12	0.99	1.01	1.50	0.98	1.18
$\phi_{Q} = 1.5$	1.06	0.99	1.00	1.51	0.93	1.16
$\phi_Q = 2.0$	0.97	0.99	0.99	1.53	0.86	1.12
Imperfect In	formation for	the Policy	Maker			
$\phi_Q = 0.1$	0.92	1.00	0.98	1.20	1.01	1.08
$\phi_Q = 0.5$	0.94	1.00	0.99	1.22	1.01	1.09
$\phi_{Q} = 1.0$	0.96	1.00	0.99	1.38	0.97	1.12
$\phi_{Q} = 1.5$	0.98	1.00	1.00	1.44	0.93	1.12
$\phi_Q = 2.0$	0.96	1.00	1.00	1.42	0.87	1.08

Notes:

1. Y gap $\equiv (\ln Y - \ln Y_{full}^*)$ where Y_{full}^* is the flexible-price equilibrium level of output in the absence of financial frictions and under full information. The loss is defined as $0.5var (Y \text{ gap}) + 0.5var (\ln \pi)$.

Table 3: Policy Rule with the Asset Price Gap (Imperfect Information for the Private Sector) $\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q (\ln Q_t - \ln Q_t^*)$

	No Financial Accelerator			Financia	or /	
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss
Full Inform	ation for the H	Policy Make	r		\land	
$\phi_Q = \underline{0.1}$	1.02	1.00	1.00	1.09	1.00	1.04
$\phi_Q = 0.5$	1.12	0.99	1.01	1.36	1.00	1.14
$\phi_{Q} = 1.0$	1.12	0.99	1.01	1.50	0.98	1.18
$\phi_Q = 1.5$	1.06	0.99	1.00	1.51	0.93	1.16
$\phi_Q = 2.0$	0.97	0.99	0.99	1.53	0.86	1.12
Imperfect In	formation for	the Policy	Maker		0	
$\phi_Q = 0.1$	0.92	1.00	0.98	1.20	1.01	1.08
$\phi_Q = 0.5$	0.94	1.00	0.99	1.22	1.01	1.09
$\phi_{Q} = 1.0$	0.96	1.00	0.99	1.38	0.97	1.12
$\phi_{Q} = 1.5$	0.98	1.00	1.00	1.44	0.93	1.12
$\phi_Q = 2.0$	0.96	1.00	1.00	1.42	0.87	1.08

Notes:

1. Y gap $\equiv (\ln Y - \ln Y_{full}^*)$ where Y_{full}^* is the flexible-price equilibrium level of output in the absence of financial frictions and under full information. The loss is defined as $0.5var(Y \text{ gap}) + 0.5var(\ln \pi)$.

Table 2:	Policy	Rule	with	the	Asset	Price	Gap
	•/						

Full Information for the Private Sector)

$\ln R_{t+1}^n = \ln R^n + 2.0 \ln \pi_t + \phi_Q($	$(\ln Q_t - \ln Q_t^*)$
---	-------------------------

	No Financial Accelerator			Financial Accelerator			/
	var(Y gap)	$var(\ln \pi)$	Loss	var(Y gap)	$var(\ln \pi)$	Loss	
Full Informe	ation for the F	Policy Make	r				
$\phi_Q = 0.1$	1.00	1.00	1.00	1.03		1.01	
$\phi_Q = 0.5$	1.00	1.00	1.00	1.10	1.01	1.04	
$\phi_Q = 1.0$	1.00	1.00	1.00	1.13	0.98	1.03	
$\phi_{Q} = 1.5$	1.01	1.00	1.00	1.17	0.95	1.02	/
$\phi_Q = 2.0$	1.01	1.00	1.00	1.22	0.92	1.02	
Imperfect In	formation for	the Policy	Maker				
$\phi_{O} = 0.1$	0.98	1.00	1.00	1.02	(.01)	1.01	
$\phi_Q = 0.5$	0.85	1.00	0.98	0.97	1.00	0.99	
$\phi_{Q} = 1.0$	0.59	0.99	0.94	0.93	0.98	0.97	
$\phi_Q = 1.5$	0.31	1.00	0.91	0.94	0.94	0.94	
$\phi_{Q}^{*} = 2.0$	0.21	1.00	0.90	0.79	0.88	0.85	

Notes:

1. Y gap $\equiv (\ln Y - \ln Y_{full}^*)$ where Y_{full}^* is the flexible-price equilibrium level of output in the absence of financial frictions and under full information. The loss is defined as 0.5var (Y gap) $+ 0.5var(\ln \pi)$.

Indeterminacy issues?

- Indeterminacy issues?
- Arbitrary Loss Function Shifts in Policy Frontier

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Indeterminacy issues?
- Arbitrary Loss Function Shifts in Policy Frontier
- Given Arbitrary Loss Function Why not optimal monetary policy?

- Indeterminacy issues?
- Arbitrary Loss Function Shifts in Policy Frontier
- Given Arbitrary Loss Function Why not optimal monetary policy?
- ▶ why not $E_t \pi_{t+1} or E_{t-1} \pi_t$? why not $Q_t E_{t-1} Q_t$? (\tilde{Q} not always viable)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Indeterminacy issues?
- Arbitrary Loss Function Shifts in Policy Frontier
- Given Arbitrary Loss Function Why not optimal monetary policy?
- ▶ why not $E_t \pi_{t+1} or E_{t-1} \pi_t$? why not $Q_t E_{t-1} Q_t$? (\tilde{Q} not always viable)

capital gain tax?

- Indeterminacy issues?
- Arbitrary Loss Function Shifts in Policy Frontier
- Given Arbitrary Loss Function Why not optimal monetary policy?
- ▶ why not $E_t \pi_{t+1} or E_{t-1} \pi_t$? why not $Q_t E_{t-1} Q_t$? (\tilde{Q} not always viable)
- capital gain tax?
- Steady state distorted: incentive to stimulate economy (how big SS-distortion?)

Three Final Considerations

Three Final Considerations

- Banking sector
- Non-linear(ized) Framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Three Final Considerations

- Banking sector
- Non-linear(ized) Framework
- Knightian uncertainty. Acting pre-emptively against worst scenario (Tetlow05)