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ABSTRACT. Cyber attacks can impair banks’ operations and precipitate bank runs. When digital

infrastructure is shared, banks defend themselves by investing in cybersecurity but can free-ride on

the security measures of others. Ex ante free-riding by banks interacts with the ex post coordina-

tion frictions underpinning bank runs. While the temptation to free-ride induces under-investment

in cybersecurity, the prospect of a run encourages greater investment. System-wide cybersecurity

is suboptimal and sensitive to rollover risk and bank heterogeneity. Regulatory measures, including

negligence rules, liquidity regulation and cyber hygiene notices, facilitate constrained efficient cy-

bersecurity investment. We suggest testable hypotheses to inform future empirical work.
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“Cyber security is a public good...the social benefit conveyed by a well

functioning and resilient financial system...requires a higher level of

investment in cyber security than what individual firms would like to do on

their own. In addition, many individual firms rely on shared services....an

individual firm may rely on others in the shared network to make investments

to increase the security of the network, but if every firm thinks this way, there

will be underinvestment in security.”

— Loretta J. Mester, Reserve Bank of Cleveland, 21 November 2019

1. INTRODUCTION

From mobile phone-based solutions for customers to virtual data rooms automating due dili-

gence processes, modern banks bear little resemblance to the brick and mortar institutions of the

turn of the century. But as the digital transformation in banking has gathered pace, so have cy-

ber risks to financial stability.1 Duffie and Younger (2019) describe how cyber attacks on banks

can trigger runs involving wholesale depositors. Operational deposits, which account for 60% of

wholesale unsecured funding for US banks, are typically the most vulnerable. These deposits are

associated with high-frequency transactions such as payroll and payment processing. Eisenbach

et al. (2022) estimate that a cyber attack on any of the five most active US banks in wholesale fund-

ing markets would have significant spillovers to other banks. Despite the growing interest in cyber

risk there is, as yet, no formal model of cyber attacks on financial stability and the implications for

regulation. Our paper fills this gap.

Our analysis builds on the premise that many banks use shared digital services provided by

third-party vendors (Kashyap and Wetherilt, 2019). For example, commercially available cloud-

based solutions allow banks to avoid the costs of owning and maintaining in-house services (Boot

et al., 2021). But they also create cybersecurity dependencies – one bank’s access can become the

‘back door’ through which an attacker can impact others. By gaining access to a bank’s systems,

1Data from the Carnegie Endowment for International Peace indicates that the number of cyber attacks on financial
institutions is increasing four-fold, year-on-year (Mauer and Nelson, 2020).
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they can deploy malicious code to exploit vulnerabilities – which are often unknown to the vendor

(Perlroth, 2021) – in the shared service and cause outages.2 Investment in cybersecurity, such as

the hiring of IT specialists to continually monitor for intrusions, allows a bank to protect both itself

and others using the shared service. Cybersecurity thus has the hallmarks of a weakest-link public

good (Hirshleifer, 1983; Cornes, 1993).

Banks’ ex ante investments in cybersecurity are shaped by the coordination failures that fuel ex

post bank runs and threaten financial stability. But since banks do not internalise the cybersecu-

rity investment decisions of others, they have incentives to free-ride on these investments. While

free riding discourages investment in cybersecurity, the prospect of a bank run encourages more

investment. And as the proclivity for runs, i.e., rollover risk, increases, so too do the incentives to

invest more in cybersecurity. At the system level, cybersecurity is under-provided when rollover

risk is low. But when the opportunity cost to withdraw is low and rollover risk is high, there

can be over-provision of cybersecurity. Although cast as a model of bank runs, our results have

broader applicability to other settings where the ex ante provision of a public good takes place in

the shadow of coordination failure.

Our framework incorporates cyber attacks and cybersecurity into a model of bank runs (Rochet

and Vives, 2004; Vives, 2014). Cyber attacks have three distinct elements. First, the greater the

intensity of an attack, the more likely it is that an intrusion will be successful in penetrating cyber-

security defences. Ex ante uncertainty over the intensity of an attack reflects uncertainty about the

identity of the attacker. This ‘attribution problem’ is a distinguishing feature of cyber attacks (Hay-

den, 2011). Second, following a successful intrusion and the deployment of malicious code, the

shared services may suffer temporary outages that disrupt operations for all banks. In 2021Q2, for

example, businesses experienced, on average, 23 days of downtime following ransomware attacks

(Coveware, 2021). And third, even after the attack has been repelled there maybe longer-lasting

2Vulnerabilities refer to coding and hardware flaws or weaknesses that can be exploited to: (i) gain privileged access
to victims’ devices and applications; (ii) access data on the affected device or application and (iii) disrupt access for
legitimate users. Vulnerabilities are ubiquitous in major platforms, from Amazon Web Services to VMware, and other
large and small digital services. Examples include the ‘Meltdown’ and ‘Spectre’ hardware vulnerabilities present in
every Intel processor since 1995, but only uncovered in 2018 (Lipp et al., 2018; Kocher et al., 2019).
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damage. These deadweight losses can stem from the theft or corruption of data, or even the de-

struction of physical systems. Bouveret (2018) estimates that the annual average loss to banks

from cyber attacks amounts to some US$100 billion, or 9% of banks’ net income globally.

Banks invest in safe and liquid projects by issuing demandable debt claims to depositors.3 To

manage these projects, banks contract digital services from a third-party vendor, or ‘platform’.

Each bank then chooses how much of its working capital it must allocate towards cybersecurity to

bolster the defences surrounding the platform against cyber attacks (a public good), and towards

operational resilience and business continuity provisions in the event of a cyber attack (a private

good). A cyber attack that causes a temporary outage to the shared service impairs banks’ ability

to manage their projects. This, in turn, can lead to deposits being withdrawn early and precipitate

a bank run. And, even after services resume, banks may suffer permanent losses that further

compromise their ability to repay depositors. We pin down a unique equilibrium using global

game methods (Morris and Shin, 2003); a run occurs if the outage exceeds a certain threshold

which depends on the bank’s investment decisions.

The more that each bank invests in cybersecurity, the greater the vigilance and fortification of

the platform. Alternatively, banks can devote resources towards operational resilience in the event

of an outage. This ensures that banks are better able to cope with outages by migrating project

management operations to back-up systems, and thereby service greater withdrawals without fail-

ing. Investing more in cybersecurity comes at the expense of investing in operational resilience.

So by investing more in cybersecurity, banks reduce the likelihood of cyber attacks causing out-

ages in shared services and disrupting their operations. But conditional on the cyber attack being

successful, banks have lower operational resilience, which increases their fragility, i.e., the risk of

failing due to runs.

Banks’ investments in cybersecurity are strategic complements, i.e. the more a bank invests in

cybersecurity, the greater are the incentives for others to do likewise. Specifically, the cyberse-

curity investment game between banks is supermodular, with expected equity values displaying
3Consistent with much evidence, uninsured bank debt is assumed to be demandable. Demandability can arise endoge-
nously due to liquidity needs (Diamond and Dybvig, 1983) or as a commitment device to overcome an agency conflict
(Calomiris and Kahn, 1991; Diamond and Rajan, 2001).
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increasing differences (Van Zandt and Vives, 2007). As such, the ex ante investments are char-

acterised by multiple equilibria. In one equilibrium, all banks find it optimal to invest nothing in

cybersecurity and to focus on shoring up their own operational resilience. And in the other, there

is a positive level of investment in cybersecurity that is to the benefit of all banks. The distribution

of working capital across banks shapes system-level cybersecurity. Greater heterogeneity of work-

ing capital across banks can lead to lower system-wide cybersecurity, depending on the support of

the distribution relative to a critical threshold that shapes the trade-off between cybersecurity and

operational resilience.

Cybersecurity investments are constrained inefficient. The desire to free-ride on the public good

contributions of other banks towards collective security means that a bank underinvests in cyber-

security. The bank equates its individual marginal rate of substitution between cybersecurity and

operational resilience with its marginal rate of transformation, in contrast to the Samuelson (1954)

rule for optimal public good provision. In this benchmark, each bank’s contribution is set by equat-

ing the sum of the marginal rate of substitution over all banks to its marginal rate of transformation.

Rollover risk, on the other hand, provides a countervailing force. Banks have stronger incentives

to stave off cyber attacks entirely by investing more in cybersecurity, which increases their mar-

ginal rates of substitution. In particular, if rollover risk is sufficiently large, banks over-invest in

cybersecurity relative to the Samuelson benchmark.

The suboptimal system-wide investment in cybersecurity can be corrected by regulatory mea-

sures. A regulator can achieve the constrained efficient outcome by establishing a minimum stan-

dard of due care, with a negligence rule penalising banks that exert insufficient care. Penalties

of the kind imposed by the US Securities and Exchange Commission (SEC) on financial firms

that have deficient cybersecurity practices can be viewed in this light. Regulators can also attain

the constrained efficient outcome by requiring banks to invest at the level necessary for optimal

provision of the public good. Such minimum guidelines for heightened cyber protection form the

basis of cyber hygiene notices and stress tests, such as those recently undertaken by the Monetary

Authority of Singapore (MAS). Regulatory measures that impact the stability of banks’ funding

structures can also be used to influence banks’ investments. In particular, by stipulating that each
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bank’s funding structure must conform to a given level of rollover risk, a regulator can also imple-

ment the constrained efficient outcome.

Our model generates several testable implications that may inform future empirical work on

cybersecurity investment and financial stability. An increase in the average intensity of cyber

attacks invites greater reliance on operational resilience vis-à-vis cybersecurity. Greater rollover

risk, such as the share of uninsured and unsecured wholesale debt, increases banks’ incentives

to invest in cybersecurity. As the losses following a cyber attack grow, banks also prefer to guard

against intrusion by investing more in cybersecurity rather than operational resilience. But as banks

increasingly fund their investments with equity, they have more to lose from a cyber attack and this

increases the returns to investing more in operational resilience over cyber safeguards.

Related literature. Our paper contributes to the nascent and largely empirical literature on cy-

bersecurity and financial stability. Duffie and Younger (2019) describe cyber-runs and conduct a

stress test to understand the resilience of systemically important US banks to wholesale depositor

withdrawals following a cyber attack.4 Eisenbach et al. (2022) examine how cyber attacks impair

a bank’s ability to repay withdrawing creditors and discuss how this influences creditors’ incen-

tives to run. They suggest that, since cyber attacks impair the ability of the bank to repay early

withdrawals, the first-mover advantage of creditors is weakened. The sequential service constraint

means that creditors who withdraw face a lower probability of being repaid in full. Our analysis

complements this argument. In our model, whenever rollover risk is low, bank failure following a

cyber attack is not driven by coordination failure but instead by the deadweight losses. In this case,

since the impairment to banks’ ability to repay is permanent, there is no scope for an inefficient

run. But when rollover risk is large, the impairment suffered by a bank following a cyber attack is

more transient, and inefficient runs are a source of bank failure.

4Jamilov et al. (2021) contribute to the empirical literature on cyber risk and contagion. They construct a text-based
measure of cyber risk, which they use to test the link between balance sheet and income statement information from
publicly-listed companies and their exposure to cyber risk. They also explore whether cyber risk exposure influences
asset pricing, and whether the effects of this exposure propagate to unaffected peer firms. They demonstrate that cyber
risk exposure has a negative and significant effect on stock returns of affected firms and find evidence that cyber risk
is a source of systematic risk in financial markets due to contagion effects or firm-to-firm networks. See also Kamiya
et al. (2021), Woods et al. (2021) and Florakis et al. (2020).
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Our paper also informs the growing policy literature in this area (Kashyap and Wetherilt, 2019;

Adelmann et al., 2020; Aldasoro et al., 2020, 2021). Many of the policy arguments for cyber stress

tests and other measures are informal – our positive analysis formalises the concerns expressed

by Mester (2019) in the epigraph, while our normative analysis makes a rigorous case for why

regulatory intervention may be justified.

There are also points of contact with the economics of security. Gordon and Loeb (2002) analyse

the factors that influence how much a firm is willing to protect itself. Varian (2004) and Grossklags

et al. (2008) extend Gordon and Loeb (2002) to the case of multiple firms with security external-

ities. We contribute to this literature in two ways. First, in modelling the incentives of banks, we

clarify the role of limited liability in shaping protection decisions. And second, we demonstrate

how the ex ante incentive to invest in security is shaped by ex post coordination failure.

Finally, we add to the large literature on bank runs and global games (Morris and Shin, 2003;

Goldstein and Pauzner, 2005). We specifically build on Rochet and Vives (2004), where unsecured

debt holders delegate their rollover decisions to professional managers, so the decisions to rollover

are global strategic complements. Our contribution shows how cyber risk management interacts

with run risk in such a setting.

2. MODEL

A single-good economy comprising N risk-neutral banks, indexed by b = {1, . . . , N}, extends

over three dates, t = 0, 1, 2. Banks differ in their endowments of working capital, Wb < 1, and

are protected by limited liability. At the initial date, each bank operates a risk-free legacy project

of unit size that is liquid and yields return, R > 1, at t = 2. Projects are funded by uninsured

demandable debt, D, and outside equity, E = 1−D. The debt is issued to creditors who delegate

roll over decisions to professional fund managers. We assume that the face value of debt, F , is

exogenous and independent of the withdrawal date. In Appendix B, we show that the key trade-offs

remain qualitatively unchanged with an endogenous face value.
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2.1. Digital service platforms. Banks require digital services to manage their projects. For ex-

ample, credit risk monitoring may be digitised using software from third parties, with the data

generated stored on secured sites (Deutsche Bundesbank, 2021). At t = 0, banks outsource these

operations to perfectly competitive digital service platforms that can simultaneously provide ser-

vices to any number of banks with negligible operating costs. We suppose that there is a represen-

tative platform and normalize the fee it charges to zero.

Digital service platforms have vulnerabilities that are unknown to the platform vendor. Would-

be attackers become aware of the vulnerabilities and seek to exploit them.5 They do this by gaining

access to local systems within banks that connect to the platform. By causing outages to digital

services, cyber attacks impair banks’ operations and can potentially precipitate bank runs.

Since the platform vendor is unaware of the vulnerabilities, it cannot require banks to undertake

mitigating actions.6 Banks must, therefore, invest in cybersecurity to monitor and repel unautho-

rised intrusions into their systems. The more they invest, the more capable they become in avoiding

cyber attacks. Banks can also expend working capital on business continuity to shore up their oper-

ational resilience to outages. We suppose that bank b invests its working capital into cybersecurity,

Sb, and operational resilience, Ob, such that Sb +Ob ≤ Wb.

2.2. Cybersecurity as a public good. The security of banks’ digital operations on the platform

is a shared responsibility, which we model as a “weaker-link” public good (Cornes, 1993). Specif-

ically, the level of cybersecurity available to all banks is

χ =

[
N∏
b=1

Sb

]1/N
. (1)

A higher level of cybersecurity entails better detection and response to intrusions of banks’ com-

puter systems. In particular, we can picture the “security blanket” over the platform as a circular

5There is an underground market for “zero day” vulnerabilities where hackers sell software and hardware vulnera-
bilities that they discover to interested buyers, such as government agencies, other hackers, and information security
firms (Perlroth, 2021). The Stuxnet malicious code that spread via Microsoft Windows and targeted industrial control
systems is an example of a code that exploited several zero day vulnerabilities (McDonald et al., 2013).
6Due to this Knightian uncertainty, insurance markets against cyber attacks are unavailable (LeRoy and Singell, 1987).
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region with N banks situated along the perimeter. Each bank is responsible for maintaining secu-

rity along its portion of the perimeter. But an attacker who breaches the section of the perimeter

guarded by bank b can disrupt the platform and adversely impact all banks. Importantly, our anal-

ysis abstracts from the security provided by the platform vendor – our focus is on cybersecurity

investments by banks over and above that provided by the platform.

The weaker-link formulation implies that investment in cybersecurity generates positive exter-

nalities for all banks since ∂χ/∂Sb > 0. The marginal product of investment in cybersecurity

is also higher for those banks with low levels of investment. Equation (1), moreover, exhibits

constant elasticity of substitution and is homogeneous to degree one. So scaling up each bank’s

investment by a constant factor increases the level of cybersecurity for all banks by the same fac-

tor. Were we to instead model cybersecurity as a weakest-link public good (Hirshleifer, 1983),

then investments across banks would be perfect complements. In this case, the marginal product of

investment to a bank – from investing at a level greater than the lowest level of investment across

all banks – would be zero and so all banks would choose the same lowest level of investment.

The weaker-link formulation, thus, allows us to better explore the impact of bank heterogeneity on

cybersecurity investments.

2.3. Cyber attacks. At t = 1, banks sharing the platform are subject to a cyber attack. The

intensity of the attack, λ ∈ [0, λ̄], is a uniformly distributed random variable that reflects the

capability of the attacker. For example, state-sponsored attackers will have considerable resources

to launch a high-intensity attack (high λ). By contrast, typical cyber-criminals will likely have

fewer resources so their attacks are less intense (low λ). The uncertainty over attack intensity

thus reflects uncertainty over the identity of the attacker, i.e., the so-called “attribution problem”

(Hayden, 2011).

A cyber attack successfully breaches the security blanket whenever λ > χ. The attack disrupts

the platform causing temporary outages.7 The outage, α ∈ [0, 1], is a uniformly distributed ran-

dom variable that impairs banks’ abilities to manage their projects and access key functions. But

7For example, the recent distributed denial of service (DDoS) attack on the New Zealand Stock Exchange prevented
the posting of market announcements and led to trading suspensions over several days (Tarabay, 2021). And an attack
on Nicehash – a crypto-currency platform – resulted in a freeze of customer funds for 24 hours (Daniel, 2020).
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investments in business continuity and operational resilience can mitigate the outage. By investing

Ob in backup systems, the effective outage shock experienced by bank b is α[1 − h(Ob)] < α,

where h(Ob) is an increasing and concave function. Unlike cybersecurity, which is a public good,

operational resilience is a private good, the benefits of which are not shared with other banks.8

2.4. Bank failure conditions. Platform outages can precipitate runs on banks due to funding

illiquidity (Duffie and Younger, 2019). If a fraction ℓb ∈ [0, 1] of debt is withdrawn at t = 1, the

the bank fails due to illiquidity whenever

R
[
1− α(1− h(Ob))

]
− ℓbFD < 0 , (2)

i.e., the value of available assets is insufficient to service withdrawals. So the bank fails whenever

α > αILb (ℓb) ≡ R−ℓbFD
R
(
1−h(Ob)

) .

Cyber attacks can also have longer-lasting repercussions. These include the loss of secret infor-

mation pivotal to the bank’s role as a financial intermediary (Dang et al., 2017), losses incurred

from paying ransom demands, and even physical damage to critical systems. The credit down-

grading in 2019 of the Maltese bank, Valletta PLC, following a cyber attack and concerns over the

bank’s operational risk management highlights the risks to bank insolvency (S&P Global Market

Intelligence, 2019).9

We capture such possibilities by assuming that bank b is subject to deadweight losses propor-

tional to the effective outage experienced. Bank b’s project yields R − Rδα(1 − h(Ob)), where

δ < 1 reflects the deadweight loss incurred through the cyber attack. The greater the deadweight

loss, the larger are bank losses and the lower the return from the project. Bank b fails due to

insolvency at t = 2 whenever

R
[
1− δα(1− h(Ob))

]
− ℓbFD < (1− ℓb)FD , (3)

8An alternate specification for the private good would be for banks to invest directly in projects and thereby lower
their leverage. The spirit of our results is unchanged in such a setting. But, with a lower leverage, the consequences of
outage shocks would be less pronounced and, hence, the scope for banks to fail following a cyber attack reduced.
9The Dark Seoul malware attack on South Korean banks induced losses of some US$ 378 million (Kopp et al., 2017).
See also Bouveret (2018).
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i.e., the gross returns from the project are insufficient to repay the total debt claims against the

bank. So the bank fails whenever α > αINb ≡ R−FD
Rδ(1−h(Ob))

, which is independent of the fraction of

withdrawals at the interim date.

2.5. Rollover decisions. Creditors delegate rollover decisions to professional fund managers who

are rewarded for making the right decision – if the bank does not fail, a fund manager’s payoff

difference between withdrawing and rolling over is −c < 0; if the bank fails, the differential payoff

is b − c > 0.10 The conservatism ratio, γ ≡ b−c
b

, summarises these payoffs. More conservative

managers (higher γ) are less inclined to roll over since the cost of withdrawing is low. When γ > 0,

fund managers’ actions are strategic complements and the bank is subject to rollover risk.

We suppose there is a continuum of fund managers, k ∈ [0, D], for creditors in each bank b, who

base their roll over decisions on private and noisy signals about the outage shock, namely

xbk = α + ϵbk , (4)

where the noise term ϵbk is independent of the outage shock, α, and is independently and identically

distributed across fund managers according to a normal distribution with mean zero and standard

deviation σ. There is no overlap between the sets of fund managers across the different banks.

Table 1 illustrates the timing of events in the model.

t = 0 t = 1 t = 2

1. Cybersecurity and
operational resilience
investments

1. Cyber attack causes outage 1. Projects mature and
deadweight losses accrue

2. Private signals on outage
disruption

2. Outstanding debts repaid

3. Fund managers roll over
or withdraw debt

TABLE 1. Timeline of events.

10As an example, assume the cost of withdrawing is c; the benefit from withdrawing when the bank fails is b− c > 0;
the payoff from rolling over when the bank fails is zero.
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3. ANALYSIS

The symmetric pure strategy perfect Bayesian equilibrium for each bank comprises a critical

shock, α∗
b , a private threshold signal, x∗b , and investments in cybersecurity, S∗

b , and operational

resilience, O∗
b , such that

(1) at t = 1, fund managers’ rollover decisions, x∗b , are optimal and the run threshold induces

bank failure whenever α > α∗
b , given S∗

b and O∗
b ;

(2) at t = 0, the bank’s investments, S∗
b and O∗

b maximise expected equity value, given the run

threshold (x∗b , α
∗
b), and subject to the resource constraint S∗

b +O∗
b ≤ Wb.

We construct the equilibrium backwards, solving for the optimal rollover decision of fund man-

agers before establishing the optimal investment in cybersecurity and operational resilience.

3.1. Rollover risk. The levels of investment in cybersecurity and operational resilience, together

with the outage shock, shape the dynamics of rollover risk. For a given mass of early withdrawals,

ℓb, bank b does not fail provided the outage shock, α, is sufficiently small. But the criteria determin-

ing the largest shock that bank b can withstand depend on whether failure is driven by illiquidity

or insolvency.

Lemma 1. There exists a unique threshold

γ̂ =
1

δ
− R

FD

[
1

δ
− 1

]
(5)

such that bank failure is driven by illiquidity if and only if the mass of withdrawals is sufficiently

large, ℓb > γ̂.

Figure 1 illustrates Lemma 1 by plotting the illiquidity and insolvency conditions together with

their “envelope” – the red line encapsulating the region where the bank does not fail. In region I,

where the fraction of withdrawals is small, ℓb < γ̂, the bank is able to service them following the

outage. But in doing so, due to deadweight losses, the bank has too few resources to repay claims



13

that are rolled over. So although the bank can meet interim liquidity needs, the cyber attack renders

it insolvent at t = 2.

Bank never fails

(I) Bank fails

due to insolvency

(II) Bank fails due to

illiquidity

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

FIGURE 1. Failure conditions for a bank following a successful cyber attack.

In region II, the fraction of withdrawals is so large, given the outage shock, that the bank is

unable to service them at t = 1. This is despite the bank having sufficient resources at t = 2, even

allowing for deadweight losses, to satisfy all its claims. So the bank fails due to illiquidity even

though it is solvent.

Assumption 1. R− FD < Rδ[1− h(Wb)]; R > FD.

Assumption 1 ensures a tripartite classification over values of the outage shock (Morris and Shin,

1998). The first part of the assumption implies that if the outage completely disrupts the platform,

α = 1, and all debt claims are rolled over, ℓb = 0, the deadweight loss is so large that the bank

cannot service its debts and fails due to insolvency. The second part of the assumption ensures

that if there is no outage, α = 0, and all fund managers withdraw early, ℓb = 1, then the bank has

sufficient resources to repay creditors in full at t = 1.
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In the limit of vanishing private noise, σ → 0, we pin down a unique run threshold, x∗b , for each

bank b following a cyber attack.

Proposition 1. There exists a unique signal, x∗b , such that fund manager k rolls over debt at t = 1

if and only if xb ≤ x∗b . The threshold signal, x∗b , corresponds to a unique outage shock threshold

α∗
b(Ob) =


αINb ≡ R−FD

Rδ[1−h(Ob)]
if γ < γ̂

αILb (γ) ≡ R−γFD
R[1−h(Ob)]

if γ ≥ γ̂.

(6)

Bank b fails whenever α > α∗
b(Ob).

Bank failure is driven by illiquidity only when rollover risk is sufficiently large, i.e. γ ≥ γ̂.

Following an outage shock, the bank is only able to service debt claims if few fund managers

withdraw. But if a sufficient proportion of fund managers withdraw, it is in each fund manager’s

best interest to also withdraw because the bank will fail as a result of the run. By contrast, when

γ < γ̂, bank failure is driven by insolvency concerns and rollover risk plays no role. Following a

large enough outage, α > αINb ≡ R−FD
Rδ[1−h(Ob)]

, each fund manager has a strictly dominant strategy

to withdraw since the bank is sure to fail. In what follows, we define bank fragility as the risk of a

bank failing due to rollover risk and measure this by the threshold α∗
b(Ob) = αILb (γ) ≡ R−γFD

R[1−h(Ob)]
,

for each bank b = 1, . . . , N .

Lemma 2. Under a binding budget constraint, Sb+Ob = Wb, greater investment in cybersecurity

increases bank fragility, i.e. ∂α∗
b

∂Sb
< 0, for all banks b = 1, ..., N .

With a binding budget constraint, investing more in cybersecurity implies a reduction in oper-

ational resilience. While this ensures that the bank is better able to thwart a cyber attack, in the

event of a high-enough intensity attack that penetrates the security blanket, the consequences for

the bank are worse. By investing too little in business continuity and back-up systems, the bank

is more exposed to the outage shock, rendering it more fragile.We next consider banks’ ex ante

investments and argue that the budget constraints always bind in equilibrium.
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3.2. Optimal cybersecurity investment. At t = 0, each bank must decide how much to invest

in cybersecurity and operational resilience, taking as given the levels of investment by other banks

and the failure threshold, α∗
b ≡ α∗

b(Ob). The ex ante probability that a cyber attack is thwarted,

given a level of cybersecurity, χ, is Pr[λ < χ] = χ/λ .

The expected profit for bank b is the sum of its profits in the event that the cyber attack fails, and

its residual profit following a cyber attack that is not severe enough to trigger bank failure, i.e.

πb(Sb, Ob) =
χ(Sb, S⃗−b)

λ
(R− FD) +

[
1− χ(Sb, S⃗−b)

λ

](∫ α∗
b

0

EV2(α,Ob)dα

)
. (7)

Bank b’s equity value following an outage is EV2(α,Ob) = R[1−αδ(1− h(Ob))]−FD, and S⃗−b

is a vector representing the cybersecurity investments by the other N − 1 banks. The bank chooses

Sb and Ob to maximise equation (7) subject to the constraint Ob + Sb ≤ Wb. But since expected

profits are increasing in both Sb and Ob, the constraint always binds in equilibrium (Bergstrom

et al., 1986).

The bank balances the marginal benefit and cost of cybersecurity when selecting its investment.

A higher level of cybersecurity investment improves the security blanket around the platform,

lowering the probability of a successful attack. But this comes at the cost of reduced investment in

operational resilience, which makes the bank more fragile in the event of a successful attack. As a

result, the bank has an incentive to free-ride on the cybersecurity investments of other banks.

To clarify the interaction between ex ante free riding in cybersecurity by banks and ex post

coordination failure, we examine two benchmark cases. In the first, we consider the allocation

problem of a social planner who chooses how much each bank should invest in cybersecurity,

taking into account how this influences other banks’ investments in the absence of any rollover

risk. In the second, we introduce coordination failure and examine how rollover risk impacts

the social planner’s choice. As a final step, we characterise the privately optimal investment for

individual banks in the face of both the free-riding problem and rollover risk.
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3.3. Benchmark 1. Absent any free riding and coordination failure, γ < γ̂ and bank b is funda-

mentally insolvent whenever α > α∗
b = αINb and runs are efficient. The allocation problem for a

social planner is

max
{Sb,Ob}

Π =
N∑
b=1

[
(χ/λ) (R− FD) +

[
1− (χ/λ)

](∫ αINb

0

EV2(α,Ob)dα

)]

subject to
N∑
b=1

Wb =
N∑
b=1

(
Sb +Ob

)
αINb =

R− FD

Rδ[1− h(Ob)]
∀ b = 1, ..., N

χ =

(
N∏
b=1

Sb

) 1
N

.

In other words, the social planner sets banks’ investments in cybersecurity and operational re-

silience to maximise the aggregate expected profits of all banks, taking into account the aggregate

resource constraint, their failure thresholds, and how cybersecurity investment influences the level

of public good provision.

The solution to the planner’s problem is given by the following system of equations:

N∑
b=1

≡ ∂πb
∂χ︷ ︸︸ ︷

(R− F D)−
∫ αINb

0

EV2(α,Ob)dα

(
λ̄− χ

)∫ αINb

0

(
∂EV2/∂Ob

)
dα︸ ︷︷ ︸

≡ ∂πb
∂Ob

=
1

∂χ/∂Sb′
, ∀ b′ = 1, . . . , N , (8)

where
∑N

b=1Wb =
∑N

b=1(Sb+Ob). Equation (8) is a version of the “Samuelson rule” (Samuelson,

1954). The planner chooses an allocation to equate the marginal rate of transformation of working

capital into cybersecurity for each bank (the right-hand side) with the sum of the marginal rates

of substitution between investing in cybersecurity and operational resilience for all N banks (the

left-hand side). The numerator on the left-hand side of equation (8) reflects the effect of a marginal

increase in cybersecurity, χ, on each bank’s equity value. With a higher level of cybersecurity,
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it is more likely that cyber attacks fail and, hence, the bank earns a higher equity value. The

denominator represents the marginal effect for each bank from investing in operational resilience.

A higher Ob implies that bank b can reduce the deadweight losses it would face in the event of a

successful attack and thereby obtain a higher equity value.

3.4. Benchmark 2. Next consider the case where banks must contend with rollover risk, i.e. γ >

γ̂. In the event of an outage, α > α∗
b =

R−γ F D
R(1−h(Ob))

, the impairment of bank b’s project is so severe

that it cannot service withdrawals and fails. But had creditors rolled over their claims, the bank

could have repaid them in full at t = 2 despite deadweight losses. So the bank fails due to illiquidity

at t = 1 even though its equity value is positive, i.e. EV2(α∗
b) = (R − FD)− δ(R − γFD) > 0.

The Samuelson rule thus becomes

N∑
b=1

≡ ∂πb
∂χ︷ ︸︸ ︷

(R− F D)−
∫ α∗

b

0

EV2(α,Ob)dα

(λ̄− χ)

[
EV2

(
α∗
b

)∂α∗
b

∂Ob

+

∫ α∗
b

0

(
∂EV2/∂Ob

)
dα

]
︸ ︷︷ ︸

≡ ∂πb
∂Ob

=
1

∂χ/∂Sb′
, (9)

for all b′ = 1, . . . , N , and where the aggregate resource constraint is satisfied. The influence of

rollover risk is twofold. First, the range of outage shocks where banks obtain positive equity value

is smaller, since α∗
b = R−γ F D

R(1−h(Ob))
< αINb . So the marginal benefit from greater cybersecurity

– in thwarting attacks and earning higher equity value – is greater. This effect increases banks’

marginal rates of substitution. Second, the marginal benefit of investing in operational resilience

also decreases as banks care more about protecting their equity value EV2(α∗
b) > 0 by thwarting

cyber attacks in the first place. Summing up, banks’ marginal rates of substitution are higher with

rollover risk. Relative to Benchmark 1, there is an over-provision of cybersecurity.

3.5. Privately optimal solution. When banks choose their investments, taking as given the invest-

ments of all other banks, they equate their marginal rate of transformation with their own marginal

rate of substitution. When both free-riding and rollover risk are present, the privately optimal level
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of cybersecurity investment is constrained inefficient. To characterise the solution, we make the

following assumption:

Assumption 2. Fund managers’ conservatism satisfies γ > γ̂ and bank failures are driven by

illiquidity.

Proposition 2. The privately optimal levels of investment (S∗
b , O

∗
b ) for bank b are given by the

solution to
∂πb/∂χ

∂πb/∂Ob

=
1

∂χ/∂Sb
, (10)

subject to the constraint Wb = S∗
b +O∗

b and where

∂πb
∂χ

= R− FD −
∫ α∗

b

0

EV2(α,Ob)dα (11)

is the marginal benefit to bank b from greater cybersecurity,

∂πb
∂Ob

=
(
λ− χ

) [
EV2(α

∗
b)
∂α∗

b

∂Ob

+

∫ α∗
b

0

∂EV2
∂Ob

dα

]
(12)

is the marginal benefit from investing in operational resilience, and α∗
b is given by equation (6).

3.6. Working capital. A feature of the weaker-link formulation is that it allows us to examine how

heterogeneity across banks’ working capital influences cybersecurity investment. Before exploring

the consequences at the system level, we first clarify how the endowment of working capital shapes

cybersecurity investment for an individual bank.

Proposition 3. There exists a critical threshold Ŵ , such that bank b’s investment in cybersecurity

is increasing in working capital, ∂S∗
b /∂Wb > 0, if and only if Wb ≤ Ŵ .

An increase in working capital induces two opposing forces on a bank’s cybersecurity invest-

ment. On one hand, for a given level of investment, Sb, an increase in working capital mechanically

increases investment in operational resilience. So the difference in equity value when a cyber at-

tack succeeds and when it fails is smaller. This reduces the incentive for the bank to invest more

in cybersecurity. On the other hand, the marginal benefit from greater investment in operational
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resilience is subject to diminishing returns. When the endowment of working capital is small, the

marginal rate of substitution is increasing with the endowment and the bank invests more in cyber-

security. But when working capital exceeds Ŵ , the marginal rate of substitution is decreasing and

there is less cybersecurity investment. The critical threshold, Ŵ , is larger when there is rollover

risk since the marginal rate of substitution is generally higher.

3.7. Other comparative static results. Propositions 4, 5 and 6 report how changes in (i) cyber

risk; (ii) bank equity; and (iii) conservatism of fund managers influence bank behavior.

Proposition 4. Cybersecurity investment is decreasing in the maximum intensity of cyber attacks,

∂S∗
b /∂λ̄ < 0, and increasing in the deadweight loss, ∂S∗

b /∂δ > 0. Conversely, fragility, α∗
b , is

decreasing in λ̄ and increasing in δ.

An increase in λ̄ implies an increase in the average intensity of cyber attacks. As the intensity

of attacks increases, so too does the likelihood that it will be successful and cause outages on the

common platform. Banks are, therefore, incentivised to invest in operational resilience in order to

mitigate the outages shocks. This, in turn, leads to a decrease in investment in both cybersecurity

and fragility.

An increase in the deadweight loss, δ, induces two effects. First, the difference in the expected

equity value earned by the bank, between when the cyber attack is unsuccessful and successful is

larger. This is because, for any given outage size, the losses suffered are larger. This effect tends

to increase the marginal rate of substitution. Second, the benefits from investing in operational

resilience are lower. In particular, the bank is better off trying to avoid outages that lead to dead-

weight losses than attempting to mitigate them by investing in operational resilience. In sum, the

two effects ensure that the bank invests more in cybersecurity and, as a consequence, fragility also

increases.

Proposition 5. A marginal increase in bank equity leads to a decrease in cybersecurity invest-

ments, ∂S
∗
b

∂E
< 0, and an decrease in fragility, dα

∗
b

dE
> 0.
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Given the fixed balance sheet assumption, an increase in bank equity mechanically leads to a

decrease in debt issuance and therefore bank leverage. But since the bank now has more ‘skin in

the game’, there is more to lose in the event that the bank fails. Since bank failure is driven by

outages, following a successful cyber attack, the marginal returns to investing more in operational

resilience (and thereby reducing fragility) are greater. So the bank reduces its investment in the

public good of cybersecurity.

Proposition 6. A marginal increase in fund managers’ conservatism leads to an increase in cy-

bersecurity investment, ∂S
∗
b

∂γ
> 0, and fragility, dα

∗
b

dγ
< 0.

Following an increase in γ, each fund manager, k, is less likely to roll over claims for any given

signal, xbk. Ex ante, this means that bank b is more likely to fail for any realisation of outage shock,

αb. Therefore, the marginal benefit to allocating an additional unit of endowment to cybersecurity

is high, relative to the marginal opportunity cost of investing more in operational resilience. This

is because the bank is more likely to fail even following a relatively low intensity cyber attack as

conservatism increases. So the bank is better off shoring up its cybersecurity defences to ward off

cyber attacks entirely, even though this leads to an increase in fragility in the event of a successful

attack.

4. SYSTEM-WIDE CYBERSECURITY

To establish the joint equilibrium for all bank investment decisions, we first show how each

bank, b, responds to an increase in cybersecurity investment by another bank.

Lemma 3. An increase in cybersecurity investment by any bank b′ ̸= b elicits an increase in

cybersecurity investment by bank b ∂S∗
b

∂Sb′
> 0, for all b = 1, . . . , N .

The security blanket is jeopardised by the banks that invest the least in cybersecurity. As each

bank increases its investment, the benefits to greater cybersecurity investment also rise for all other

banks. Increases in cybersecurity investment by bank b′, from a low base, are met by substantial

increases in bank b’s contribution. As Sb′ becomes sufficiently large, the net benefit to bank b
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from additional cybersecurity investment is still positive but smaller in magnitude. This reflects

the increased opportunity cost from investing additional units of working capital in cybersecurity.

A consequence of Lemma 3 is that the cybersecurity investment game between banks is super-

modular with increasing differences in banks’ expected profits (Van Zandt and Vives, 2007). This

ensures that banks’ best response correspondences for the level of cybersecurity investment, given

the investments of other banks, intersect to yield greatest and least Nash equilibria.

4.1. Joint equilibrium. The system-wide consequences for cybersecurity are summarised in the

following proposition:

Proposition 7. There exist two Nash equilibria. In the first, all banks invest nothing in cyber-

security, S∗
b = 0 for all b = 1, ...N . In the second, all banks split their endowments between

cybersecurity and operational resilience, S∗
b ∈ (0,Wb) for all b = 1, ...N , and the equilibrium

level of cybersecurity is

χ∗ =

(
N∏
b=1

S∗
b

) 1
N

.

Figure 2 illustrates Proposition 7 for the two-bank case. If bank b anticipates that others will

invest more of their working capital into operational resilience, then it expects the level of cyberse-

curity to be low. So cyber attacks, including those of low intensity, are likely to be successful and

disruptive. It is therefore a best response for bank b to also devote more of its working capital on

operational resilience. Since all banks reason and behave this way, there is no investment in this

“bad” equilibrium.

In the other equilibrium, each bank invests S∗
b ∈ (0,Wb) on cybersecurity. If bank b expects

others to invest a small amount in cybersecurity, then it is in bank b’s interests to do so as well. But

once the level of investment by all other banks is sufficiently high, system-wide security attains a

relatively high level. Beyond this point, there are negative returns to bank b from further investing

in cybersecurity and it refrains from doing so. The “good” equilibrium corresponds to the point of

diminishing returns for all banks.
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FIGURE 2. The best response of each bank to the level of investment in cyberse-
curity by the other bank. The best response curves overlap at a least and greatest
Nash equilibrium in which each bank invests nothing, or a positive amount, into
cybersecurity respectively.

4.2. Distribution of working capital. At the system level, we can order all banks according to

their endowments of working capital, W1 < W2 < ... < WN , without loss of generality. We also

make the following assumption:

Assumption 3. Initial endowments of working capital satisfy W1 < Ŵ and WN > Ŵ .

Assumption 3 implies that, following a marginal increase in its endowment, bank 1 increases its

cybersecurity investment, while bank N decreases this investment in favour of shoring up opera-

tional resilience.

Proposition 8. A mean-preserving spread increase in banks’ endowments of working capital re-

duces equilibrium cybersecurity, χ∗.

Following a mean-preserving spread increase in working capital at the system level, bank 1 and

bank N both choose to decrease their cybersecurity investment in favour of operational resilience.

Anticipating this, all other banks decrease their investments as well since decisions are strategic
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complements. If the shift in endowments is not symmetric around Ŵ , the net effect is generally

ambiguous. For example, if the endowments of only ‘poor’ banks would increase, i.e. those with

Wb < Ŵ , then the net effect is an increase in cybersecurity. Not only would poor banks increase

investments, but so too would ‘rich’ banks.

But if the endowments of only rich banks increases (banks for whom Wb ≥ Ŵ ), the opposite

is true. Rich banks would want to invest more in operational resilience to lower fragility, which

influences poor banks to do the same. The provision of system-level cybersecurity thus depends

crucially on the distribution of working capital.

5. REGULATORY IMPLICATIONS & TESTABLE HYPOTHESES

The laissez-faire equilibrium in Proposition 2 can be fruitfully compared with Benchmark 1,

which is akin to the problem confronting a ‘regulator’. Recall in the setting of Benchmark 1, the

regulator operates in the absence of rollover risk, and internalises the impact that banks’ cyber

investments have on each other, when choosing allocations for the system as a whole. We denote

by SR the level of investment in cybersecurity set by the regulator, which is common for all banks.

Proposition 9. For each bank, b = 1, . . . , N , there exists a critical threshold, γcb , such that there

is underinvestment in cybersecurity, S∗
b < SRb , if and only if γ < γcb .

When rollover risk is low, then so too is the risk of bank failure due to a run. Ex ante, this does not

present a strong incentive for a bank to invest in cybersecurity. Compared with Benchmark 1, free-

riding exerts a stronger influence on banks’ incentives and implies under-provision of the public

good. As rollover risk increases, the risk of bank failure due to runs also rises. In this situation,

banks have greater incentives to stave off cyber attacks and, accordingly, invest in cybersecurity.

Rollover risk considerations dominate free-riding and lead to over-provision of cybersecurity and

under-investment by banks in their own operational resilience.

Importantly, the point at which this coordination failure concerns begin to dominate those are

free-riding depend on the bank’s initial endowment of working capital. Thus, at the system-level
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the normative implications are more ambiguous. However, for γ < min{γc1, . . . , γcN}, it is clear

that free-riding motives dominate for all banks and so there is a collective underinvestment in

cybersecurity. While, for γ > max{γc1, . . . , γcN} the influence of rollover risk is dominating for all

banks, thereby leading to an overinvestment in cybersecurity at the system level.

5.1. Liquidity regulation. Our analysis offers a novel perspective on regulation aimed at ensuring

stable bank funding. The parameter γ can be broadly interpreted as a measure of the fragility of

banks’ funding structures. A bank that is exposed to large rollover risk may be characterised,

for example, by a small net stable funding ratio (NSFR). Our model suggests that by relaxing such

liquidation regulations, banks would become more exposed to rollover risk and thereby invest more

in cybersecurity. Moreover, if the regulations could be tailored for individual banks, such that for

each bank, b, we have that γb = γcb , the regulator can elicit the constrained efficient outcome that

accounts for the interaction between ex ante free riding and ex post run risks. Blanket liquidity

regulations, however, will always lead to sub-optimal outcomes given the heterogeneity across

banks. But once broader risks to financial stability are taken into account, policymakers may opt

for stricter liquidity regulation that reduces banks’ rollover risk, albeit at the expense of greater

cyber risk.

5.2. Duty of care. The regulator can achieve the Benchmark 1 outcome by establishing a negli-

gence rule. To see this, consider the case γ < min{γc1, . . . , γcN}, where all banks under-invest in

cybersecurity and free-riding dominates rollover risk concerns. We then have the following result.

Proposition 10. The regulator can achieve the constrained efficient outcome by introducing a

negligence rule at t = 2 with a penalty κb, in the event of a successful attack, that is proportional

to the bank’s investment, S∗
b , when it is less than SRb .

The negligence rule establishes the regulator’s solution as a minimum level of due care for each

bank (Brown, 1973; Shavell, 2009). If a cyber attack is successful and banks suffer losses, then

there is no further liability so long as all banks exercise the due care standard, i.e. so long as all

banks exercise the due care standard, i.e. so long as each bank invests at least SRb . Otherwise,
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banks that exert insufficient care are penalised proportionally to the level of their under-investment

with a penalty of κb.11

The penalty, κb, reflects the distance between the regulator’s optimum and what the bank chooses

in the absence of any intervention. Although the bank does not directly internalise how its invest-

ment impacts other banks, the penalty ensures that the constrained efficient allocation provides the

best private outcome for the bank. And since the incentives to invest in cybersecurity are increas-

ing in rollover risk, γ, we have that ∂κb
∂γ

< 0. The penalty required to enforce the negligence rule is

smaller when rollover risk concerns prompt the bank to invest more in cybersecurity.

Imposing a conditional penalty increases the marginal returns to each additional unit invested in

cybersecurity because the penalty erodes residual profits in the event of a cyber attack. So banks are

better off substituting operational resilience for cybersecurity. Banks continue to substitute away

from operational resilience until the constrained efficient outcome is reached. When constrained

efficient, banks pay no penalty since their investment meets the standard of due care.

5.3. Cyber hygiene notices and stress tests. The regulator can also achieve the constrained ef-

ficient outcome by imposing that each bank invests SR at t = 0. Clearly, constraining banks to

invest at least the level set by the regulator will ensure that there is optimal provision of the public

good. But the choices are sub-optimal for banks since they would choose to invest at lower lev-

els. An example is the approach taken by the Monetary Authority of Singapore (MAS). The MAS

sets minimum regulatory guidelines in the form of a Cyber Hygiene Notice that obliges banks to

implement a set of cybersecurity measures, including network perimeter defenses, malware pro-

tection, and baseline configuration standards. Compliance with these regulatory requirements and

expectations are verified and enforced by the MAS (Goh et al., 2020).

The use of cyber stress tests, such as those implemented by the Bank of England, is another form

of such a regulatory approach. The Financial Policy Committee of the Bank tests the resilience

11The ability of the US Securities and Exchange Commission (SEC) to sanction and fine financial firms for deficient
cybersecurity procedures is an example of such a negligence rule. In 2021, the SEC fined eight firms $200,000 –
$300,000 each for poor cybersecurity that resulted in the disclosure of customer information.
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of the UK financial system to cyber attacks by requiring financial firms to meet a system-wide

tolerance threshold set by the regulator (Kashyap and Wetherilt, 2019).

5.4. Testable implications. Our model suggests a rich set of testable hypotheses that may inform

future empirical work. Data on cybersecurity investment can be obtained, for example, from the

Network and Information Systems (NIS) survey conducted by the European Union Agency for

Cybersecurity (ENISA). This annual survey provides information on firms, IT budgets and infor-

mation security spending.

Prediction 1. Banks invest more on operational resilience following an uptick in cyber attacks.

Our analysis suggests that, following an increase in the intensity of cyber attacks, banks will

be incentivised to mitigate the consequences by setting up recovery procedures that trigger in

the event of a breach. In the US, for example, a potential proxy for such mitigating action is

the extent to which banks have obtained certification from an industry standard such as Sheltered

Harbor for their resilience planning. Using state-level data, an empirical specification might regress

the fraction of banks obtaining Sheltered Harbor certification against measures of how large and

widespread a cyber attack is. Our model predicts that the coefficient should be positive.

Prediction 2. Greater rollover risk increases cybersecurity investment.

Heightened rollover risk increases the marginal benefits of preventative cybersecurity relative to

the marginal costs of mitigating actions on business continuity. In an empirical specification that

regresses cybersecurity investment against banks’ shares of uninsured and unsecured wholesale

debt, the coefficient should be positive.

Prediction 3. Banks with lower leverage invest less in cybersecurity.

Banks that predominantly fund investments with equity have more to lose from a cyber attack

and will tend to invest in backup procedures and mitigating actions to lower failure risk. Our model

suggests that there should be a positive coefficient when cybersecurity investment is regressed

against measures of bank leverage.
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Prediction 4. Banks invest more in cybersecurity following an increase in losses from cyber at-

tacks.

Banks that experience more costly attacks should, according to our analysis, invest more in

cybersecurity than those experiencing less disruption since their incentives to protect equity value

are greater. Information on bank losses following a cyber attack is available from data sources such

as Advisen (Aldasoro et al., 2020).

6. CONCLUSION

We provide an analytical framework to show how cyber attacks might morph into bank runs,

and which takes seriously the notion that cybersecurity is a public good (Mester, 2019). In our

model, banks trade off strengthening their operational resilience to ward off private run risk against

taking measures that benefit the security of the system as a whole. System-wide investment in

cybersecurity is suboptimal as a result. We show how cybersecurity at the system level depends

on the distribution of banks’ working capital and derive several comparative static results that lend

themselves to empirical testing. We also discuss how negligence rules, cyber hygiene notices, and

regulatory guidance on bank funding structures can facilitate constrained efficient outcomes.

Financial regulators are increasingly focussed on cyber risks to financial stability. For example,

the European Central Bank has introduced a Threat Intelligence-Based Ethical Red Team (TIBER-

EU) framework for EU-based financial entities (Panetta, 2020). And the Monetary Authority of

Singapore has examined how banks’ capital and liquidity buffers might cope in the face of a 24-

hour system outage triggered by a cyber event (Goh et al., 2020). Our work provides a formal basis

for such regulatory emphasis. In highlighting the important role of shared IT services in generating

cyber risk dependencies across banks, our results highlight the importance of data on the network

of linkages between banks and digital platforms. Such data might usefully inform “top-down”

macroprudential cyber stress testing in much the same way as stress tests on interbank networks

(Gai et al., 2011; Glasserman and Young, 2016).
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Future work on the interaction between cyber risk management and rollover risk might usefully

explore the role of cyber insurance markets in shaping the trade-offs identified in this paper. Deeper

analysis of the drivers of the deadweight losses from cyber attacks is also warranted. Arguably,

cyber attacks compromise the ability of a bank to both make and keep secret information and it is

the loss of such information that is, ultimately, most devastating for the integrity of the financial

system.
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APPENDIX A. PROOFS

A.1. Proof of Lemma 1. Bank b fails due to insolvency whenever

α > αINb ≡ R− FD

Rδ[1− h(Ob)]
, (13)

while it fails due to illiquidity whenever

α > αILb (ℓb) ≡
R− ℓbFD

R[1− h(Ob)]
. (14)

While αINb is invariant to the proportion of withdrawals, the threshold αILb (ℓb) is decreasing in

ℓb. The proportion of withdrawals, γ̂, for which the two failure conditions intersect is given by

αILb (γ̂) = αINb , i.e.,
R− FD

Rδ[1− h(Ob)]
=

R− γ̂FD

R[1− h(Ob)]
, (15)

which is independent of the amount invested in operational resilience.

A.2. Proof of Proposition 1. The proof is in three steps. First, we show that the dominance

regions at t = 1 are well defined. If all fund managers withdraw early, ℓb = 1, then the illiquidity

failure threshold is given by αILb (1) = R−FD
R[1−h(Ob)]

, where αILb (1) < αINb . If, however, no fund

manager withdraws at t = 1, then ℓb = 0. In this case, the bank never fails due to illiquidity since

αILb (0) = 1
1−h(Ob)

> 1. But the bank can, nevertheless, fail at t = 2 due to insolvency whenever

α > αINb , since αINb < 1.

Under Assumption 1, it follows that αb ≡ αILb (1) > 0 is the largest accessibility shock under

which bank b’s survival is independent of the number of fund managers withdrawing early. When

α ∈ [0, αb], fund managers have a dominant strategy to roll over their claims. Let αb ≡ αINb < 1

denote the upper dominance bound, beyond which bank b fails regardless of the number of fund

managers who withdraw early. When α ∈ [αb, 1], fund managers have a dominant strategy to

withdraw early. Finally, for α ∈ (αb, αb), If the outage shock were common knowledge, the run

dynamics of fund managers would be characterized by multiple, self-fulfilling equilibria, as shown
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in Figure 3.
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FIGURE 3. Tripartite classification of the accessibility shock.

Second, we define a threshold strategy which, for well defined dominance bounds and suf-

ficiently precise private information, survives iterated deletion of strictly dominated strategies

(Morris and Shin, 2003; Frankel et al., 2003). Denote this threshold point x∗b , with correspond-

ing strategy

s(xbk) =


withdraw if xbk > x∗b ,

roll over if xbk ≤ x∗b .

(16)

Finally, we characterise this equilibrium. With switching point x∗b , the proportion of fund man-

agers who withdraw at t = 1, given some realisation of the outage shock α is

ℓb(α, x
∗
b) = Pr(xbk > x∗b |α) = 1− Φ

(
x∗b − α

σ

)
, (17)

where Φ(·) is the cumulative distribution function of the standard normal distribution. At some

critical mass of withdrawals, ℓ∗b(α
∗
b , x

∗
b), the bank just reaches its survival threshold, α∗

b :

[R(1− α∗
b [1− h(Ob)])− ℓ∗b(α

∗
b , x

∗
b)FD]++Rα∗

b [1−h(Ob)](1− δ) = [1− ℓ∗b(α
∗
b , x

∗
b)]FD, (18)

whenever ℓ∗b(α
∗
b , x

∗
b) ≤ γ̂, and

R(1− α∗
b [1− h(Ob)]) = ℓ∗b(α

∗
b , x

∗
b)FD, (19)

whenever ℓ∗b(α
∗
b , x

∗
b) > γ̂.



31

To determine Pr(α > α∗
b |xik), fund managers use Bayes’ rule. At the threshold signal x∗b , fund

managers should be indifferent between withdrawing and rolling over, so that

γ = Pr(α ≤ α∗
b |xbk = x∗b). (20)

Let G(α|xbk = x, σ) denote the posterior distribution over the accessibility shock, conditional on

observing xbk.

From equation (17), we can write the critical accessibility shock as follows

α∗
b = x∗b − σΦ−1 (1− ℓ∗b) . (21)

Inserting this into (20), we have

γ = G
(
x∗b − σΦ−1 (1− ℓ∗b) |xbk = x∗b , σ

)
. (22)

As private signals become infinitely precise, i.e., as σ → 0, the right-hand side of condition (22)

simplifies to

G(x∗b − σΦ−1 (1− ℓ∗b) |xbk, σ) → Φ
(
−Φ−1(1− ℓ∗b)

)
. (23)

The anticipated critical mass of withdrawals by a fund manager who observes xbk = x∗b thus

approaches ℓ∗b = γ. Substituting for ℓ∗b in (18) and (19) gives us a unique outage shock

α∗
b =


αINb ≡ R−FD

Rδ[1−h(Ob)]
if γ < γ̂,

αILb (γ) ≡ R−γFD
R[1−h(Ob)]

if γ ≥ γ̂,

(24)

and the run threshold in Proposition 1 follows.

A.3. Proof of Lemma 2. Under a binding budget constraint, we have Ob = Wb − Sb. First,

suppose that γ ≤ γ̂ so that banks fail due to insolvency. Taking the partial derivative of αINb with

respect to Sb, we have
∂αINb
∂Sb

=
αINb (Sb)

[1− h(Wb − Sb)]

∂h

∂Sb
< 0 . (25)

Since operational resilience is lower when the bank invests more in cybersecurity, i.e., ∂h/∂Sb < 0.
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Next, suppose that γ ≥ γ̂ so that banks fail due to illiquidity. Similarly, we have

∂αILb
∂Sb

=
αILb (Sb)

[1− h(Wb − Sb)]

∂h

∂Sb
< 0 , (26)

since, as above, ∂h/∂Sb < 0. Because the bank fails whenever the outage shock is above the

threshold, fragility increases as the threshold falls. Therefore, fragility is increasing in cybersecu-

rity investments.

A.4. Samuelson benchmark conditions. We next set out the optimisation problem for the plan-

ner and derive the Samuelson (1954) rule for each of Benchmarks 1 and 2.

The planner optimises the combined surplus from each bank b = 1, ..., N , given by expected

equity value

Π =
N∑
b=1

[
(χ/λ)(R− F D) + [1− (χ/λ)]

(∫ αINb

0

EV2(α,Ob)dα

)]
, (27)

where, for γ < γ̂, bank b’s failure condition is αINb , and subject to the level of cybersecurity given

by

χ =

(
N∏
b=1

Sb

) 1
N

,

and the aggregate resource constraint
∑N

b=1Wb =
∑N

b=1(Sb + Ob). The planner’s Lagrangian is,

thus,

L =
N∑
b=1

[
(χ/λ)(R− FD) + [1− χ/λ]

(∫ αINb

0

EV2(α,Ob)dα

)]

+ ϕ1

(
N∑
b=1

Wb −
N∑
b=1

Ob −
N∑
b=1

Sb

)
+ ϕ2

( N∏
b=1

Sb

) 1
N

− χ

 .

(28)
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The necessary and sufficient Kuhn-Tucker conditions are

(1)
∂L
∂Ob

= 0 : (λ− χ)

[∫ αINb

0

∂EV2
∂Ob

dα

]
= λϕ1 ∀b = 1, ..., N ;

(2)
∂L
∂χ

= 0 :
N∑
b=1

[
R− FD −

∫ αINb

0

EV2(α,Ob)dα

]
= λϕ2;

(3)
∂L
∂Sb

= 0 : ϕ2

(∏N
b=1 Sb

) 1
N

NSb
= ϕ1 ∀b = 1, ..., N.

From conditions (2) and (3), it is clear that

(1/λ)
∑N

b=1

[
R− FD −

∫ αINb

0

EV2(α,Ob)dα

]
ϕ1

=
1(∏N

b=1 Sb

) 1
N
/NSb

.

Substituting for ϕ1 from condition (1), we have

N∑
b=1

[
R− FD −

∫ αINb

0

EV2(α,Ob)dα

]

(λ− χ)

[∫ αINb

0

∂EV2
∂Ob

dα

] =
1

∂χ/∂Sb
. (29)

In the case with rollover risk, γ > γ̂, the critical outage shock is α∗
b = R−γ F D

R[1−h(Ob)]
. We repeat

the same exercise to obtain Benchmark 2. In the main text, we argue that Benchmark 2 elicits an

over-investment in cybersecurity relative to Benchmark 1. To see this, consider the marginal rate

of substitution for bank b under Benchmark 2, which is given by

(R− F D)−
∫ α∗

b

0

EV2(α,Ob)dα

(λ̄− χ)

[
EV2

(
α∗
b

) ∂α∗
b

∂Ob
+

∫ α∗
b

0

(
∂EV2/∂Ob

)
dα

] . (30)
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An increase in rollover risk, γ, causes the numerator to increase, since ∂α∗
b/∂γ < 0 for all banks.

But it also causes the denominator to decrease, since

(λ− χ)

[
∂EV2(α

∗
b)

∂γ

∂α∗
b

∂Ob

+ EV2(α
∗
b)

∂2α∗
b

∂Ob∂γ
+Rδα∗

b

∂h

∂Ob

∂α∗
b

∂γ

]
< 0 .

The first and last terms cancel out, leaving the middle term which is negative, since

∂2α∗
b

∂Ob∂γ
=

∂h/∂Ob

1− h(Ob)

∂α∗
b

∂γ
< 0 .

Therefore, with rollover risk, the marginal rates of substitution for each bank are higher, leading to

greater investment in cybersecurity relative to Benchmark 1.

A.5. Proof of Proposition 2. Each bank, b = 1, . . . , N , chooses cybersecurity investments, Sb,

and operational resilience, Ob, to maximise its expected equity value. Repeating an analogous ex-

ercise to that in the previous section – but for a single bank – produces the condition in Proposition

2. Substituting for Ob = Wb − Sb, we have that

∂πb
∂Sb

=
∂χ

∂Sb

(
R− FD −

∫ α∗
b

0

EV2(α)dα

)
+ (λ− χ)

(
EV2(α

∗
b)
∂α∗

b

∂Sb
+

∫ α∗
b

0

∂EV2
∂Sb

dα

)
. (31)

The optimal S∗
b is thus given by the first-order condition ∂πb

∂Sb

∣∣∣
Sb=S

∗
b

= 0. Since limSb→0 ∂χ/∂Sb =

+∞, it follows that limSb→0
∂πb
∂Sb

> 0. Thus, it is always optimal for the bank to invest a positive

level in cybersecurity, given that other banks also invest at a positive level as well. Moreover,

for Sb → Wb, as long as h(0) > 1 − 2(α∗
b (0)−1)(R−FD)

Rδ(α∗
b (0))

2 , where α∗
b(0) is the bank’s illiquidity

threshold when the bank invests nothing in operational resilience,Ob = 0, the first term in Equation

(31) is negative. And since the second term is strictly negative, it follows that limSb→Wb

∂πb
∂Sb

<

0. Therefore it is never optimal for the bank to invest everything in cybersecurity. Thus, by

the intermediate value theorem, an optimum for the investment in cybersecurity exists within the

interval (0,Wb) for each bank b = 1, . . . , N .
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Finally, we need to show that the optimum is a maximum. For this, the second partial derivative

of bank b’s expected equity value with respect to cybersecurity investment is given by

∂2πb
∂S2

b

=

(
∂2χ

∂S2
b

/
λ

)[
R− FD −

∫ α∗
b

0

EV2(α)dα

]

−
(
2
∂χ

∂Sb

/
λ

)[
EV2(α

∗
b)
∂α∗

b

∂Sb
+Rδ

∂h

∂Sb

(α∗
b)

2

2

]

+ (1− χ/λ)

[
EV2(α

∗
b)
∂2α∗

b

∂S2
b

+Rδ
∂2h

∂S2
b

(α∗
b)

2

2

]
.

Evaluating the above expression at Sb = S∗
b , we get

∂2πb
∂S2

b

∣∣∣∣∣
Sb=S

∗
b

=

(
R− FD −

∫ α∗
b

0

EV2(α)dα

)∂2χ
∂S2

b

+
2
(
∂χ
∂Sb

)2
1− χ


+(1− χ)

{
EV2(α

∗
b)
∂2α∗

b

∂S2
b

+Rδ(α∗
b)

2

(
1

2

∂2h

∂S2
b

+
(∂h/∂Sb)

2

1− h(Wb − S∗
b )

)}
.

(32)

For ease of notation, we only sparingly highlight some terms that depend on the equilibrium level of

investment in cybersecurity. Denoting byW = max{W1, . . . ,WN}, then as long asN >
⌈
1+WN

1−WN

⌉
,

the term in the squared brackets in Equation (32) is negative. Next, note that

∂2α∗
b

∂S2
b

=
2α∗

b

1− h(Wb − S∗
b )

[
1

2

∂2h

∂S2
b

+
(∂h/∂Sb)

2

1− h(Wb − Sb)

]
.

Rearranging the term inside the curly braces on the second line in Equation (32) gives us(
EV2(α

∗
b)

2α∗
b

1− h(Wb − S∗
b )

+Rδ(α∗
b)

2

)[
1

2

∂2h

∂S2
b

+
(∂h/∂Sb)

2

1− h(Wb − S∗
b )

]
. (33)

Thus a sufficient condition for for ∂2πb/∂S2
b |S∗

b
< 0 is

1

2

∂2h

∂S2
b

+
(∂h/∂Sb)

2

1− h(Wb − S∗
b )
< 0 . (34)

An example of a function that satisfies this condition is h(Ob) = ζ +Oψ
b , where ζ > 0 and ψ < 1.

In particular, whenever ζ < 1 − W
ψ
(1+ψ)

(1−ψ) , we have that the condition in Equation (34) is satisfied

and that ∂2πb/∂S2
b |Sb=S∗

b
< 0, and so the optimum is indeed a maximum.
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A.6. Proof of Proposition 3. By the implicit function theorem, the equilibrium investment by

bank b changes in response to a change in endowment, Wb, (for a fixed level of investment by all

other contracting banks) as follows

∂S∗
b

∂Wb

=
−1
∂2πb
∂S2

b

[
∂χ

∂Sb

(
−EV2(α∗

b)
∂α∗

b

∂Wb

−Rδ
(α∗

b)
2

2

∂h

∂Wb

)
+ [1− χ(Sb)]

{
EVb(α

∗
b)

∂2α∗
b

∂Sb∂Wb

+Rδ(α∗
b)

2

(
1

2

∂2h

∂Sb∂Wb

+
1

1− h(Wb − S∗
b )

∂h

∂Sb

∂h

∂Wb

)}]
.

(35)

Rearranging the cross derivative, we have

α∗
b

{
2EV2(α

∗
b)

1− h(Wb − Sb)
+Rδα∗

b

}[
∂h/∂S

1− h(Wb − S∗
b )

+
∂2h/∂Sb∂Wb

2∂h/∂Wb

− (1/λ)∂χ/∂Sb

2(1− χ/λ)

]
.

Both terms inside braces are positive. Therefore, a necessary and sufficient condition for S∗
b to

be increasing in Wb is

∂2h/∂Sb∂Wb

∂h/∂Wb

+
2∂h/∂Sb

1− h(Wb − S∗
b )
>

∂χ
∂Sb

/
λ

1− χ/λ
. (36)

Let Ŵ be the level of endowment such that ∂S∗
b /∂Wb = 0. Using the example above, where

h(Ob) = ζ +Oψ
b , the threshold, Ŵ , is defined implicitly by

{
ψ + 1− 2ψ(1− ζ)

1− ζ − (Ŵ − Ŝ)ψ

}
= (Ŵ − Ŝ)

 ∂χ
∂Sb

/
λ

1− χ/λ

 , (37)

where Ŝ is the equilibrium investment in cybersecurity elicited by the endowment, Ŵ . To establish

that Ŵ is well defined, first consider an endowment, Wb, that is marginally larger than Ŵ . Given

Ŝ, this would imply that ∂S∗
b /∂Wb < 0. And so the new investment in cybersecurity is lower than

Ŝ. Consequently, Wb − S∗
b > Ŵ − Ŝ for W > Ŵ . This, in turn implies that the violation of the

condition in Equation (36) grows in equilibrium. Next consider a Wb that is marginally smaller

than Ŵ . As before, given Ŝ this implies that at Wb, we have that ∂S∗
b /∂Wb > 0. Consequently,
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Sb > Ŝ and therefore Wb − S∗
b < Ŵ − Ŝ, which implies that the condition in Equation (36)

continues to hold in equilibrium.

A.7. Proof of Proposition 4. By the implicit function theorem, the response of S∗
b to a marginal

increase in λ is given by

∂S∗
b /∂λ =

−1
∂2πb
∂S2

b

{
EV2(α

∗
b)
∂α∗

b

∂Sb
+

∫ α∗
b

0

∂EV2(α)

∂Sb
dα

}
< 0 . (38)

The terms inside the braces are both negative, since

∂α∗
b

∂Sb
=

α∗
b

1− h[Wb − Sb]

∂h

∂Sb
< 0 ,

and ∫ α∗
b

0

∂EV2(α, Sb)

∂Sb
dα = Rδ

(α∗
b)

2

2

∂h

∂Sb
< 0 .

Together, implies that ∂S∗
b /∂λ < 0.

To see that fragility is decreasing in λ, note that fragility is affected only indirectly by the change

in S∗
b . Therefore,

dα∗
b

dλ
=
∂α∗

b

∂Sb
(∂S∗

b /∂λ) > 0 . (39)

A marginal increase in the deadweight loss, δ, on the other hand, increases equilibrium cyberse-

curity investment:

∂S∗
b

∂δ
=

−1
∂2πb
∂S2

b

{
∂χ

∂Sb
R[1− h(Wb − S∗

b )]
(α∗

b)
2

2

+ (λ− χ)

[
−Rα∗

b [1− h(Wb − S∗
b )]
∂α∗

b

∂Sb
+R

(α∗
b)

2

2

∂h

∂Sb

]}
,

which can be simplified to

−1
∂2πb
∂S2

b

{
∂χ

∂Sb
R[1− h(Wb − S∗

b )]
(α∗

b)
2

2

}
> 0 . (40)
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Since α∗
b is independent of δ, fragility is affected only indirectly by the deadweight loss:

dα∗
b

dδ
=
∂α∗

b

∂Sb

∂S∗
b

∂δ
< 0 . (41)

A.8. Proof of Proposition 5. Bank equity, E = 1 −D, is used to fund the portion of the project

that is not funded by debt. Banks’ equilibrium investments respond as follows to a marginal in-

crease in D as follows

∂S∗
b

∂D
=

−1
∂2πb
∂S2

b

{
∂χ

∂Sb

(
−F (1− α∗

b)− EV2(α
∗
b)
∂α∗

b

∂D

)

+ (λ− χ)

[
∂α∗

b

∂Sb

∂EV2
∂D

+ EV2(α
∗
b)

∂h/∂Sb
1− h(Wb − S∗

b )

∂α∗
b

∂Sb
+Rδα∗

b

∂h

∂Sb

∂α∗
b

∂D

]}
.

(42)

All the terms in the square brackets are positive. Therefore, a sufficient condition for the expression

in (42) to be increasing is

γ >
−Rh(Wb − S∗

b )

EV2(α∗
b)− F D

.

From Lemma 1 we have,

γ̂ =
1

δ

[
1− R(1− δ)

F D

]
,

and since EV2(α∗
b) = 0 at γ̂, the condition is satisfied by Assumption 1 . Substituting for D =

1− E, we have ∂S∗
b /∂E < 0.

The effect on bank fragility is two-fold.

dα∗
b

dE
=
∂α∗

b

∂E
+
∂α∗

b

∂Sb

∂S∗
b

∂E
> 0 . (43)

An increase in equity directly reduces fragility, since a lower portion of the bank’s project is funded

by debt that is subject to runs. Moreover, an increase in equity causes banks to allocate more of

their resources towards operational resilience, causing a reduction in cybersecurity investment.

This also lowers fragility by bolstering operational resilience.
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A.9. Proof of Proposition 6. As rollover risk rises, the response of each bank’s equilibrium in-

vestment in cybersecurity is given by

∂S∗
b

∂γ
=

−1
∂2πb
∂S2

b

{
− ∂χ

∂Sb
EV2(α

∗
b)
∂α∗

b

∂γ
+ (λ− χ)

[
−Rδ[1− h(Wb − S∗

b )]
∂α∗

b

∂Sb

∂α∗
b

∂γ

+ EV2(α
∗
b)

∂h/∂Sb
1− h(Wb − S∗

b )

∂α∗
b

∂γ

]
+Rδ

∂h

∂Sb
α∗
b

∂α∗
b

∂γ

}
,

(44)

which simplifies to

−1
∂2πb
∂S2

b

{
− ∂χ

∂Sb
EV2(α

∗
b)
∂α∗

b

∂γ
+ (λ− χ)EV2(α

∗
b)

∂h/∂Sb
1− h(Wb − S∗

b )

∂α∗
b

∂γ

}
> 0 . (45)

The first term in the parenthesis is positive since ∂α∗
b/∂γ = −FD

R[1−h(Wb−Sb)]
< 0, and the second

term is also positive since ∂h/∂Sb < 0. Therefore, ∂S∗
b /∂γ > 0.

An increase in rollover risk introduces a direct and indirect effect on bank fragility.

dα∗
b

dγ
=
∂α∗

b

∂γ
+
∂α∗

b

∂Sb

∂S∗
b

∂γ
< 0 . (46)

For each outage shock, the likelihood of bank failure increases in γ, which represents the equilib-

rium proportion of fund manager withdrawals in Proposition 1, and so ∂α∗
b/∂γ < 0. Furthermore,

banks reallocate resources towards cybersecurity in an effort to avoid an outage entirely which, by

Lemma 2, increases bank fragility.

A.10. Proof of Lemma 3. By the implicit function theorem, the marginal response of bank b to a

change in investment by one other bank, b′, holding all other bank investments fixed, is given by

∂S∗
b

∂Sb′
=

−1
∂2πb
∂S2

b

[
∂2χ

∂SbSb′

(
R− FD −

∫ α∗
b

0

EV2(α)dα

)

− ∂χ

∂Sb′

(
EV2(α

∗
b)
∂α∗

b

∂Sb
+Rδ

(α∗
b)

2

2

∂h

∂Sb

)]
.
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By concavity of the profit function, ∂2πb/∂S2
b < 0, bank b’s response is increasing if and only if[

∂2χ

∂SbSb′

(
R− FD −

∫ α∗
b

0

EV2(α)dα

)
− ∂χ

∂Sb′

(
EV2(α

∗
b)
∂α∗

b

∂Sb
+Rδ

(α∗
b)

2

2

∂h

∂Sb

)]
≥ 0.

Using the first order condition, we can rewrite the above inequality as follows

(
EV2(α

∗
b)
∂α∗

b

∂Sb
+Rδ

(α∗
b)

2

2

∂h

∂Sb

)−(λ− χ(Sb, S⃗−b))
∂2χ

∂SbSb′

∂χ/∂Sb
− ∂χ

∂Sb′

 .
Since both ∂χ/∂Sb > 0 and ∂χ/∂Sb′ > 0, and since

∂2χ

∂SbSb′
=
χ(Sb, S⃗−b)

N2SbSb′
> 0 ,

the term inside square brackets is negative. With ∂α∗
b/∂Sb < 0 and ∂h/∂Sb < 0, the inequality is

satisfied and ∂Sb/∂Sb′ > 0.

A.11. Proof of Proposition 7. We use the results of Van Zandt and Vives (2007) to show that

monotone supermodularity of the ex ante investment decision is sufficient to establish the existence

of a greatest and least Nash equilibrium.

Define bank b’s best response correspondence, BRb(S⃗−b) : S⃗−b → [0,Wb], as follows:

BRb(S⃗−b) ≡ argmax
Sb∈[0,Wb]

πb(Sb|S⃗−b). (47)

To prove that the investment decision is supermodular, it is sufficient to establish:

(1) The profit function, πb(Sb|S⃗−b), is supermodular:

πb(Sb|S⃗−b) + πb(S
′
b|S⃗−b) ≤ πb(Sb ∧ S ′

b|S⃗−b) + πb(Sb ∨ S ′
b|S⃗−b),

where Sb, S ′
b ̸= Sb ∈ [0,Wb] and ∧ and ∨ denote the meet and join of investments Sb and

S ′
b respectively. Since the investment space is a lattice, it follows that the meet and join of

Sb and S ′
b are in the investment space. Supermodularity of the profit function follows from

the concavity of the profit function.



41

(2) The action profile has increasing first differences:

∂2πb
∂SbSb′

≥ 0,

for all b, b′ ̸= b ∈ N , where N denotes the set of banks b = 1, ..., N that contract on the

platform. This holds from the Proof of Lemma 3.

Together, this is sufficient to establish that the investment decision is monotone supermodular.

By the results of Van Zandt and Vives (2007), the best response mapping BRb(S⃗−b) must, there-

fore, contain a well-defined greatest (BRb(S⃗−b)) and least element (BRb(S⃗−b)) and the set of all

greatest (least) best responses for each b = 1, . . . , N form a greatest and a least Nash equilibrium.

Next, we characterise these equilibria. It is straightforward to show that the zero-investment

outcome is a (least) Nash equilibrium. In the two-bank case, if the other bank invests nothing in

cybersecurity, bank b’s marginal payoff is negative for any non-zero investment:

∂πb
∂Sb

∣∣∣∣∣
Sb′=0

= EV2(α
∗
b)
∂α∗

b

∂Sb
+Rδ

(α∗
b)

2

2

∂h

∂Sb
< 0 ∀Sb ∈ [0,Wb].

When the other bank sets its investment in cybersecurity to 0, bank b’s profits are decreasing in Sb

for all Sb ∈ [0,Wb] and so it maximises its profits by setting Sb = 0. This is a Nash equilibrium

since

πb(0|0) ≥ πb(S
′
b|0) S ′

b ̸= 0.

That is, given that the other bank has invested 0, the profits accruing to b for investing any amount

other than 0 are lower than those received by investing 0.

We can also show that the greatest Nash equilibrium is different from zero (i.e., BRb(S⃗−b) ̸=

BRb(S⃗−b)) by a contradiction. Suppose that S∗
b′ > 0 and that BRb(S⃗−b)|Sb′>0 = 0. By the

definition of BRb(S⃗−b), profits are maximised whenever Sb forms a best response. By concavity

of the profit function, there is an interior solution whenever Wb > Ŵb. If the derivative of a strictly

concave function is zero at some point, then that point is a global maximum. But we also show

that ∂πb/∂Sb|Sb→0 > 0. This implies that BRb(S⃗−b)|Sb′>0 > 0, a contradiction. The two-bank
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case can be easily generalised into a game with N > 2 banks. This is sufficient to prove that

BRb(S⃗−b) ̸= BRb(S⃗−b) = 0 and the cybersecurity investment game has multiple Nash equilibria.

A.12. Proof of Proposition 8. From the proof of Proposition 3, we have ∂S∗
1/∂W1 > 0 since

W1 < Ŵ . Therefore, bank 1 decreases its equilibrium investment following a decrease in its

endowment. Since WN > Ŵ , Proposition 3 also implies that ∂S∗
N/∂WN < 0. Both banks, thus,

reduce their equilibrium investments in response to a mean-preserving spread shift in endowments.

Moreover, by Lemma 3, the equilibrium investments by all other banks on the platform also

decrease in response to the reduction by banks 1 and N . Together, these effects result in a decrease

in equilibrium cybersecurity, χ∗(S⃗).

A.13. Proof of Proposition 9. As previously argued, in the absence of rollover risk, banks under-

invest in cybersecurity due to their free riding incentives. But, as rollover risk increases, individual

banks choose to invest more in cybersecurity, while Benchmark 1 remains unchanged. And, as

γ increases, the gap between what banks individually choose to invest and that from Benchmark

1 decreases. Thus, for a critical level of rollover risk, γcj , bank j’s investment in cybersecurity is

equal to that given under Benchmark 1. For each bank, j = 1, . . . , N , the critical γcj is given by

the solution to

∂πj(α
∗
j , γ

c
j )/∂χ

∂πj(α∗
j , γ

c
j )/∂Oj

=

N∑
b=1

∂πb(α
IN
b )/∂χ

∂πb(αINb )/∂Ob

. (48)

Thus, for γ < min{γc1, . . . , γcN}, there is underinvestment by all banks relative to Benchmark 1,

while for all γ > max{γc1, . . . , γcN}, there is overinvestment by all banks at the system level. For

intermediate values, however, the results are ambiguous.

A.14. Proof of Proposition 10. With a negligence rule in place, expected profits include a penalty,

κb(Ob), that is implemented conditional on a successful cyber attack

πb(Sb, Ob) = (χ(Sb, S⃗−b)/λ̄) (R− F D)

+

(
1− χ(Sb, S⃗−b)

λ̄

)∫ α∗
b (Ob)

0

[
R(1− α δ(1− h(Ob))− F D − κb(Ob)

]
dα .
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The introduction of a negligence rule lowers expected profits in all events where a cyber attack is

successful and the bank survives, increasing the relative benefits from investing more in cybersecu-

rity. For the penalty to be effective in eliciting the social optimum, it must satisfy two conditions:

R− FD

Rδ(1− h(Ob))
− κb(Ob)

Rδ(1− h(Ob))
> α∗

b(Ob) , (49)

i.e., the penalty is not so large that it leads the bank to fail for any successful attack, and

πb(S
R
b , O

R
b ) ≥ πb(Sb, Ob) ,

for all Sb ≤ SRb and Ob ≥ OR
b . That is, the penalty should be large enough that profits subject to a

negligence rule under the social optimum are preferable to those in the laissez faire optimum.

Suppose the penalty is structured in the following way

κb(Ob) =


κb ×Ob if Ob > OR

b ,

0 otherwise.
(50)

Then the optimal penalties, {κ∗j}Nj=1, that deliver the social optimum are each given by

R− F D −
∫ α∗

j

0

[
EV2(α)− κ∗jOj

]
dα

(
λ̄− χ

) [(
EV2(α∗

j )− κ∗jOj

)
∂α∗

j

∂Oj
+

∫ α∗
j

0

(
∂EV2/∂Oj − κ∗j

)
dα

] = (51)

N∑
b=1

(R− F D)−
∫ αINb

0

EV2(α)dα

(
λ̄− χ

) ∫ αINb

0

(
∂EV2/∂Ob

)
dα

.

The left-hand side of (51) is the marginal rate of substitution between the public good and oper-

ational resilience for bank j, and the right-hand side is the sum of the marginal rates of substitution

over all banks in the absence of rollover risk. Taking the partial derivative of the left-hand side
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with respect to the penalty, we have

Ojα
∗
jξ(Oj) +

(
R− F D −

∫ α∗
j

0

[
EV2(α)− κ∗jOj

]
dα
)
(λ̄− χ)

[
Oj

∂α∗
j

∂Oj
+ α∗

j

]
[ξ(Oj)]

2 > 0,

where ξ(Oj) =
(
λ̄− χ

) [(
EV2(α

∗
j )− κ∗jOj

)
∂α∗

j

∂Oj
+
∫ α∗

j

0

(
∂EV2/∂Oj − κ∗j

)
dα
]
. With the left-

hand side increasing in κ∗j , an optimal penalty exists by the intermediate value theorem.

The size of the optimal penalty is affected by the degree of rollover risk. As we have just

shown, the marginal rate of substitution for bank j is increasing in κ∗j . Further, as we establish

in the derivation of the Samuelson benchmarks, each bank’s marginal rate of substitution is also

increasing in γ. Therefore, by the implicit function theorem, it must hold that ∂κ∗j/∂γ < 0

APPENDIX B. ENDOGENISING THE FACE VALUE OF DEBT

In this section, we endogenise the face value and show that the main trade-offs and insights are

unaffected in this more generalised model.

The value of a debt claim issued by bank b, which we denote by V (F, S⃗e), depends on creditors’

expectations over how much banks invest in cybersecurity, S⃗e. Under the simplifying assumption

that creditors receive nothing in the event of a bank failure, we obtain

Vb(Fb, S⃗
e) ≡ [χ(Seb , S⃗

e
−b)/λ]Fb +

(
1− χ(Seb , S⃗

e
−b)/λ

)
α∗
b( Oe

b︸︷︷︸
=Wb−Seb

, Fb)Fb .

So if the cyber attack is unsuccessful, creditors are repaid in full for sure. While, if the cyber attack

succeeds and the platform suffers an outage, then creditors are only repaid if the bank does not fail

due to a run. To keep notation succinct in what follows, we denote the fragility threshold as a

function of investment in cybersecurity and face value of debt, so α∗
b ≡ α∗

b(Sb, Fb).

If creditors have access to a safe outside investment option that yields r > 0, the face value of

debt under perfect competition is given by the solution to

V (Fb, S⃗
e) = r . (52)
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Lemma 4. If bank equity is sufficiently high, E > Ē, the equilibrium face value, F ∗
b (S

e
b ), is

increasing in cybersecurity investment, ∂F
∗
b

∂Seb
> 0.

Proof. The face value, F ∗
b (Sb) is the value of Fb that satisfies

V (Fb, Sb) ≡
χ(Sb, S⃗−b)

λ
Fb +

(
1− χ(Sb, S⃗−b)

λ

)
α∗
b(Sb, Fb)Fb = r. (53)

An increase in face value, increases the value function

∂V

∂Fb
=
χ(Sb, S⃗−b)

λ
+

 1− χ(Sb,S⃗−b)

λ

R[1− h(Ob)]

 [R− 2γFbD] > 0, (54)

as long as E > Ê ≡ 2γ−1
2γ

. Next, to see that the value function is decreasing in Sb, note that

∂V

∂Sb
= Fb

{
∂χ/∂Sb

λ
− α∗

b(Sb, Fb)

[
∂χ/∂Sb

λ
−

(
1− χ(Sb, S⃗−b)

λ

)
∂h/∂Sb

1− h(Wb − Sb)

]}
. (55)

Since ∂α∗
b/∂E < 0, it is clear that there exists another threshold, Ẽ, such that for E > Ẽ we have

that

∂χ/∂Sb < α∗
b(Sb, Fb | Ẽ)

[
∂χ

∂Sb
− (λ− χ(Sb, S⃗−b))

∂h/∂Sb
1− h(Wb − Sb)

]
,

and so ∂V/∂Sb < 0. Thus, for E > Ē ≡ max{Ê, Ẽ}, we have by the implicit function that

∂F ∗
b

∂Sb
=

−1

∂V/∂Fb

(
∂V

∂Sb

)
> 0. (56)

□

Creditors demand compensation for additional cybersecurity investment to offset the heightened

fragility to which the bank is exposed in the event of a breach. The marginal returns to operational

resilience are large relative to cybersecurity. So each creditor lends to the bank at a rate that

depends positively on expectations of the bank’s investment in cybersecurity. The bank, for its part,

takes face value as given when setting its optimal allocation between cybersecurity and operational

resilience.
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Proposition 11. If γ > γ̄, there is a unique equilibrium (S∗
b , F

∗
b ) such that creditors’ participation

constraints are satisfied and the bank optimally chooses its cybersecurity investment.

Proof. To establish the equilibrium set (S∗
b , F

∗
b ), we first show that the level of investment in cy-

bersecurity that the bank chooses to maximise equity value is increasing in Fb. By the implicit

function theorem, the marginal response of S∗
b to a unit increase in Fb is given by

∂S∗
b

∂Fb
=

−1

∂2πb/∂S2
b

[
∂2πb

∂Seb∂Fb

]
, (57)

where
∂2π

∂Seb∂Fb
= (∂χ/∂Seb )(1/λ)

[
−D(1− α∗

b(Sb, Fb))− EV2(α
∗
b)
∂α∗

b

∂Fb

]

+
(
1− χ(Sb, S⃗−b)/λ

)[
EV2(α

∗
b)

∂h/∂Sb
1− h(Wb − Sb)

∂α∗
b

∂Fb
+
∂EV2(α

∗
b)

∂Fb

∂α∗
b

∂Sb

+Rδα∗
b(Ob, Fb)

∂h

∂Sb

∂α∗
b

∂Sb

]
,

where the second term is positive. The first term can be simplified to

−(∂χ/∂Seb )(1/λ)D
(
1− (1− γδ)α∗

b(Sb, Fb)− γδαINb (Sb, Fb)
)
,

which is positive if and only if E > (1−δ)
2−γδ . For γ > γ̄ ≡ 2+3γ−

√
4−4δ+9δ2

4δ
, it follows that this

condition is always satisfied for E > Ē. This establishes that ∂S∗
b /∂Fb > 0. From Lemma

4, we have that ∂F ∗
b /∂S

e
b > 0. For a unique intersection, we require that (i) the value F̃b such

that S∗
b (F̃b) = Wb satisfies F̃b > F ∗

b (Wb); and (ii) the value F˜ b such that S∗
b (F˜ b) = 0 satisfies

F˜ b < r. □

Figure 4 illustrates the equilibrium. The laissez-faire outcome that arises with an endogenous

face value retains the link between rollover risk (ex post coordination failure) and cybersecurity in-

vestment (ex ante free riding on the public good). As the optimal level of cybersecurity increases,

creditors demand higher face value to choose bank debt over their safe outside option. With a

higher face value, bank b is made more fragile for every proportion of early withdrawals in the

event that a cyber attack is successful, and so it is better off allocating its working capital towards
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FIGURE 4. The face value of debt demanded by creditors, F ∗
b , and level of cy-

bersecurity investment initiated by each bank, S∗
b , are uniquely determined by the

intersection (A) of bank b’s reaction function (blue line) and creditors’ reaction
function (red line). Following an increase in rollover risk, the curves shift and the
new equilibrium is given by intersection (B).

cybersecurity. Since each bank only internalises its own marginal rate of substitution and face

value, the free riding problem remains. The unique equilibrium (S∗
b , F

∗
b ) satisfies creditors’ par-

ticipation constraints and equates the bank’s private marginal rate of substitution with its marginal

rate of transformation.

Proposition 12. Cybersecurity investment is increasing in rollover risk, ∂S
∗
b

∂γ
> 0.

Proof. We have already demonstrated that ∂S∗
b /∂γ > 0. Next, consider the face value, F ∗

b (S
e
b ). To

see the direct effect on F ∗
b (S

e
b ), by the implicit function theorem, we have

∂F ∗
b

∂γ
=

−1

∂V/∂Fb

[(
1− χ(Sb, S⃗−b)

λ

)
Fb
∂α∗

b

∂γ

]
> 0. (58)

The expression is positive since ∂α∗
b/∂γ < 0. With an upward shift in both response functions,

we have an increase in both S∗
b and F ∗

b in equilibrium. □
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Following an increase in γ, each fund manager k is less likely to rollover claims at t = 1 for

any given signal xbk. Ex ante, this means that bank b is more likely to fail for any realisation of

the outage shock, αb, and a given Fb. So the marginal benefit of an additional unit of cybersecurity

is high relative to the marginal cost of further investment in operational resilience. The bank is

therefore better off shoring up cyber defenses, even though this means an increase in fragility in

the event of a successful attack. At the same time, with high rollover risk, creditors demand higher

face value to choose bank debt over their safe outside option.

The effects on cybersecurity and face value are, thus, self-reinforcing. As such, the signs of the

other comparative static results are unchanged. Both cybersecurity investment, S∗
b (Fb), and face

value, F ∗
b (S

e
b ) are increasing in the deadweight loss of an attack, δ, and are decreasing in attack

intensity, λ, and bank equity, E.
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