Growth at Risk From Climate Change

Michael T. Kiley

Federal Reserve Board

Views are those of the author, and do not reflect those of the Federal Reserve or its staff

Motivation

 ullet Climate change is among the central economic and social challenges of the 21^{st} century.

 Rising temperatures, shifts in precipitation, more frequent and severe extreme weather events and natural disasters, and sea level rise – among other changes induced by climate change – may depress economic activity

• These changes may also alter risks to economic activity

Contribution

• Examine risks to economic activity associated with climate change in a large panel of countries

- Illustrate the Growth at Risk from climate change under alternative Representative Concentration Pathways (RCPs)
- Growth at Risk is large in low income or "hot" countries—severe economic contractions may be more likely in the future owing to climate change

Previous literature

- Impact of climate change on growth has been examined in
 - Integrated assessment models (e.g., Nordhaus DICE model)
 - Reduced form regressions (e.g., Dell, Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015; Kalkuhl and Wenz, 2020; Newell, Prest, and Sexton, 2021)
- Reduced-form approach has used weather to proxy for effects of climate change, which may/may not be a good guide to the effects of climate (Dell, Olken, and Jones, 2014; Hsiang, 2016)
 - This work has focused on average expected effects \rightarrow least squares regressions
- Previous work on risks limited (e.g., risks of different climate pathways, as in Lemoine and Kapnick, 2016; Kahn et al, 2018; & NGFS)
- Macroeconomic research on risks growing (Adrian et al, 2019; Kiley; forthcoming)

Growth at Risk approach

Quantile regressions linking growth and weather

$$\Delta y(t,j) = a_j + A_D D + F(T(t,j)).$$

- What can a quantile regression tell us?
 - The approach can inform an assessment of how the distribution of economic growth may shift with a change in weather (climate)
 - A median regression provides a sense of the shift in the central tendency of growth (like least squares, potentially with less influence from outliers)?
 - Exploring other quantiles can inform whether
 - Growth may become more volatile
 - Or more negatively skewed (i.e., larger or more frequent growth disasters)

Growth at Risk approach--specifications

• (A) -- Quadratic in temperature:

$$F(T(t,j)) = a_{1,0}T(t,j) + a_{1,1}T(t,j)^{2}.$$

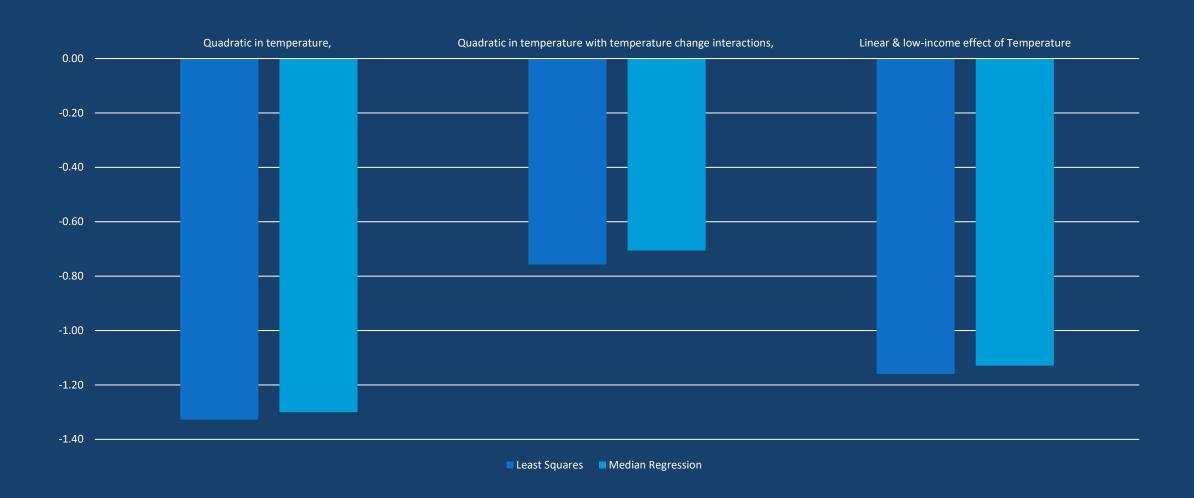
• (B) -- (A) with temperature change interactions:

$$F(T(t,j)) = a_{1,0}T(t,j) + a_{1,1}T(t,j)^2 + a_{2,0}\Delta T(t,j) + a_{2,1}T(t,j)\Delta T(t,j).$$

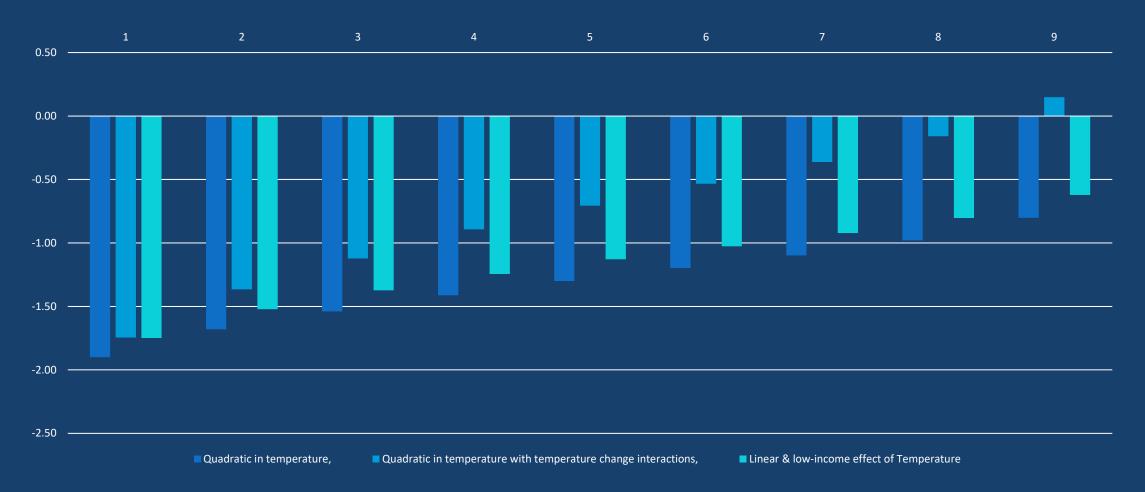
• (C) -- Linear & low-income effect of temperature:

$$F(T(t,j)) = a_{1,0}T(t,j) + a_{1,1}T(t,j)I_{low\ income}$$

Data


• From Burke, Davis, and Diffenbaugh (2018)

• 124 countries, 1960-2010

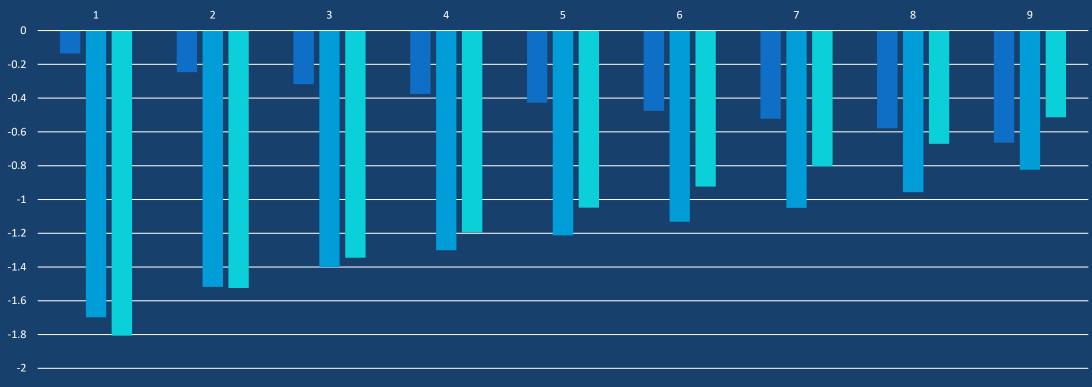

Focus on growth of real GDP per capita

 Temperature variables use detailed data, aggregated to country level using population weights

Temperature \rightarrow central tendency of growth

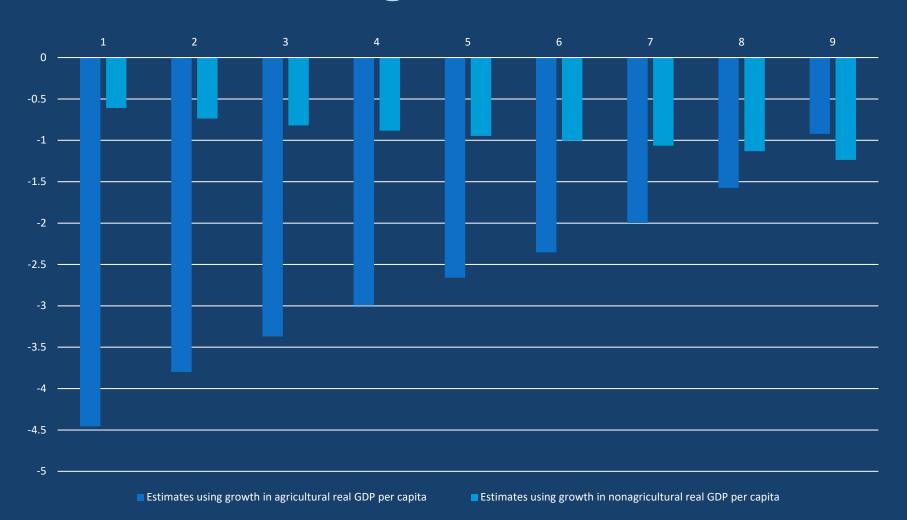
Quantile regressions: Temperature \rightarrow growth (columns refer to growth decile)

Temperature \rightarrow growth distribution Robustness checks


- Are effects implausibly large when extrapolated N years into future?
 - >1pp effect of 1 degree increase in temp. → >50 percent decline in GDP (relative to baseline) after 50 years
 - Regressions focus on business cycle movements—may be inappropriate to extrapolate
 - Regressions with detrended GDP bound cumulative effect at a lower level and yield similar results for risk of growth disasters
- Other key robustness issues (Newell, Prest, and Sexton, 2020)
 - Sensitivity of results to treatment of low frequency components of growth
 - Effects on nonagricultural vs agricultural GDP

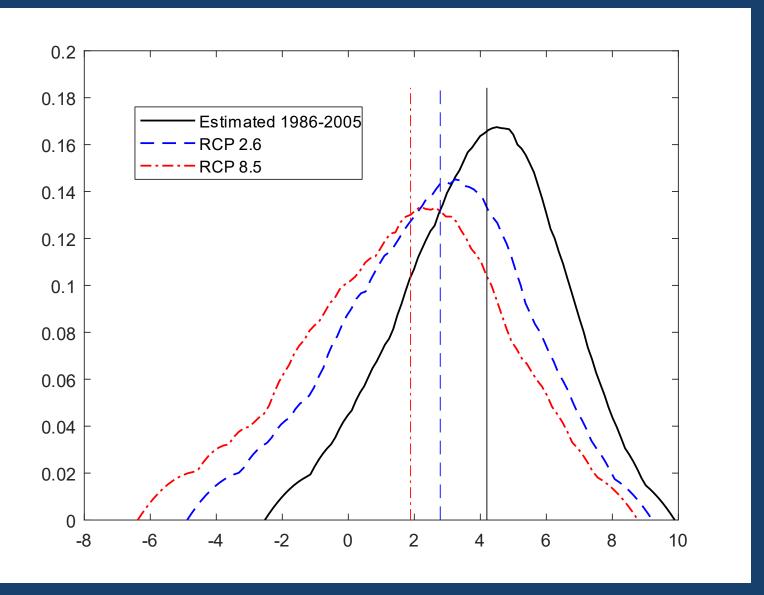
Temperature \rightarrow growth distribution Sensitivity to low frequency trends

- Treatment of low frequency components of growth
 - Baseline: Quadratic time trends (from Burke, Hsiang, and Miguel, 2015)
- Newell, Prest, Sexton (2020)—results not robust to excluding trends


- Consider three alternative versions
 - No trends
 - No trends, with country-specific post-1990 dummy to capture low frequency
 - No trends, only post-1990 data

Temperature \rightarrow growth distribution Sensitivity to low frequency trends

- Estimates excluding country-specific quadratic time trends
- Estimates excluding country-specific quadratic time trends and adding (post-1990 dummy)*(country fixed effects)
- Estimates excluding country-specific quadratic time trends, only post-1990 data


Temperature \rightarrow growth distribution Agricultural vs nonagricultural GDP

Implications for Growth at Risk (G@R)--Examples

- USA high income and moderate temperature → G@R low
- Brazil high income and relatively high temperature → G@R may be low or high, depending on whether temperature or income specification is the best guide
- India and Nigeria low income and high temperature → G@R high
- Relative agricultural intensity of each suggests similar implications when considering the agricultural vs. nonagricultural GDP results

Growth at Risk in India

Conclusions

Growth at Risk from climate change is potentially very large

 Effect of climate on growth much larger for downside risks – climate change may make severe contractions in economic activity more likely

 Reduced form regressions may not account for adaptations, etc., and additional work is needed

Appendix

Baseline Quantile regressions (columns refer to growth decile)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Quadratic in temperature											
Effect in hot countries											
$a_{1,0} + 2 * a_{1,1} * 25.64$	-1.900	-1.681	-1.540	-1.412	-1.300	-1.198	-1.098	-0.980	-0.802		
Standard error	0.730	0.566	0.467	0.396	0.347	0.320	0.314	0.337	0.413		
p-value	0.012	0.003	0.001	0.000	0.000	0.000	0.000	0.004	0.052		
Quadratic in temperature with temperature change interactions											
Effect in hot countries											
$a_{1,0} + 2 * a_{1,1} * 25.64$	-1.745	-1.366	-1.122	-0.893	-0.706	-0.534	-0.362	-0.159	0.149		
Standard error	0.941	0.708	0.580	0.488	0.423	0.388	0.384	0.415	0.521		
p-value	0.064	0.054	0.053	0.067	0.095	0.169	0.345	0.702	0.775		
Linear & low-income effect of Temperature											
Effect in poor countries											
$a_{1,0} + a_{1,1}$	-1.749	-1.522	-1.373	-1.245	-1.129	-1.027	-0.922	-0.803	-0.622		
Standard error	1.026	0.786	0.631	0.510	0.408	0.332	0.281	0.273	0.365		
p-value	0.088	0.053	0.030	0.015	0.006	0.002	0.001	0.003	0.089		

Some robustness results (columns refer to growth decile)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Estimates excluding country-specific quadratic time trends										
Effect in hot countries										
$a_{1,0} + 2 * a_{1,1} * 25.64$	-0.135	-0.246	-0.317	-0.375	-0.427	-0.475	-0.522	-0.579	-0.664	
Standard error	0.528	0.403	0.341	0.306	0.292	0.296	0.315	0.354	0.438	
p-value	0.799	0.542	0.352	0.221	0.144	0.108	0.098	0.102	0.129	
Estimates excluding coun	try-specific	quadratio	time tren	ds and add	ding (post-	1990 dum	my)*(coun	itry fixed e	ffects)	
Effect in hot countries										
$a_{1,0} + 2 * a_{1,1} * 25.64$	-1.698	-1.518	-1.4	-1.301	-1.213	-1.132	-1.05	-0.957	-0.824	
Standard error	0.652	0.530	0.464	0.422	0.394	0.382	0.384	0.402	0.453	
p-value	0.012	0.004	0.003	0.002	0.002	0.003	0.006	0.017	0.069	
Estimates excluding country-specific quadratic time trends, only post-1990 data										
Effect in hot countries										
$a_{1,0} + 2 * a_{1,1} * 25.64$	-1.807	-1.524	-1.345	-1.195	-1.049	-0.924	-0.803	-0.671	-0.513	
Standard error	1.223	1.008	0.891	0.816	0.759	0.722	0.703	0.699	0.728	
p-value	0.179	0.131	0.131	0.143	0.167	0.201	0.253	0.338	0.481	

Long-run effect with detrended real GDP

$$\Delta y^{detrended}(t,j) = a_j + A_D D + b \cdot y^{detrended}(t-1,j) + F(T(t,j)).$$

Long run effect on real GDP

$$\frac{F(T(t,j))}{1+b}$$

<u>(return)</u>