

MicroVelocity

Rethinking the velocity of money for digital currencies

Carlo Campajola

Universität Zürich UZH Blockchain Center

Marco D'Errico (ECB), Claudio J. Tessone (UZH BCC)

- + Digital currency opens to new analytics and policy channels
- + Measure Velocity of Money from micro-level?
- + Cryptocurrencies are an ideal sandbox

- + Digital currency opens to new analytics and policy channels
- + Measure Velocity of Money from micro-level?
- + Cryptocurrencies are an ideal sandbox

- + Digital currency opens to new analytics and policy channels
- + Measure Velocity of Money from micro-level?
- + Cryptocurrencies are an ideal sandbox

- + Digital currency opens to new analytics and policy channels
- + Measure Velocity of Money from micro-level?
- + Cryptocurrencies are an ideal sandbox
 - Some research questions:
- Do different economic agents contribute differently to the overall velocity?
- + Does this relate to other factors (wealth, centrality, ...)?

- + Digital currency opens to new analytics and policy channels
- + Measure Velocity of Money from micro-level?
- + Cryptocurrencies are an ideal sandbox
 - Some research questions:
- Do different economic agents contribute differently to the overall velocity?
- + Does this relate to other factors (wealth, centrality, ...)?

- + M = monetary Mass (# of coins in the economy)
- + V =Velocity
- + *P* = Price level (avg. unit price of goods/services)
- + Q = Nominal economic output (# units of goods/services)

V represents the average number of times a unit of currency changes hands over a time period

Measuring V

V cannot be directly observed

However Wang et al.[, <code>Physica A (2003)]</code> give microeconomic foundations to construct the macroeconomic V

Let's call:

- + τ random time ("holding time") a coin stays idle between transactions
- + $p(\tau)$ its probability distribution
- + hence $Mp(\tau)d\tau$ is the fraction of coins with holding time τ

Measuring V

V cannot be directly observed

However Wang et al.[, <code>Physica A (2003)]</code> give microeconomic foundations to construct the macroeconomic V

Let's call:

- + τ random time ("holding time") a coin stays idle between transactions
- + $p(\tau)$ its probability distribution
- + hence $Mp(\tau)d\tau$ is the fraction of coins with holding time τ

Measuring V

V cannot be directly observed

However Wang et al.[, <code>Physica A (2003)]</code> give microeconomic foundations to construct the macroeconomic V

Let's call:

- + τ random time ("holding time") a coin stays idle between transactions
- + $p(\tau)$ its probability distribution
- + hence $Mp(\tau)d\tau$ is the fraction of coins with holding time τ

Measuring V

V cannot be directly observed

However Wang et al.[, <code>Physica A (2003)]</code> give microeconomic foundations to construct the macroeconomic V

 $Mp(\tau)d\tau$ is the fraction of coins with holding time τ

Measuring V

V cannot be directly observed

However Wang et al.[, Physica A (2003)] give microeconomic foundations to construct the macroeconomic ${\cal V}$

 $Mp(\tau)d\tau$ is the fraction of coins with holding time τ Then the money flow (in stationary state) they generate is

$$F(\tau) = Mp(\tau)\frac{1}{\tau}d\tau$$

Measuring V

V cannot be directly observed

However Wang et al.[, Physica A (2003)] give microeconomic foundations to construct the macroeconomic ${\cal V}$

But by definition
$$\int_0^{+\infty} F(\tau) = PQ = MV$$
, then

$$V = \int_0^{+\infty} \frac{1}{\tau} p(\tau) d\tau$$

Problem becomes: how to measure $p(\tau)$ *?*

Here comes crypto

With blockchains you have access to full transaction history

In UTXO currencies you can measure τ for all coins!

Here comes crypto

With blockchains you have access to full transaction history

In UTXO currencies you can measure τ for all coins!

Two additional considerations...

Time is discrete in blockchain-based systems - block time

Coins have different $p(\tau)$ *depending on their owner*

MicroVelocity

We can define the user-based MicroVelocity

$$V_i(t) = \sum_{\tau=1}^{\infty} \frac{M_i(t)}{M} \frac{1}{\tau} P_i^{(t)}(\tau)$$

where

- + $M_i(t)$ is the wealth of i at time t
- + $P_i^{(t)}(\tau)$ is the fraction of coins held for τ blocks by *i*
- + $V(t) = \sum_{i} V_{i}(t)$ by design

MicroVelocity

We can define the user-based MicroVelocity

$$V_i(t) = \sum_{\tau=1}^{\infty} \frac{M_i(t)}{M} \frac{1}{\tau} P_i^{(t)}(\tau)$$

MicroVelocity

Data

We implement our analysis for four alt-coins

MonaCoin

Universität

¦ürich^{⊍z⊦}

- + Genesis block 2013-12-31 8:44:32 UTC
- + ~ 2.2 M blocks since genesis (one every 1.5 minutes)

Blockchair

Center

- + ~ 1.3 M "agents"
 - FeatherCoin
- + Genesis block 2013-04-16 21:17:40 UTC
- + ~ 3.5 M blocks since genesis (one every minute)
- + ~ 600 K "agents"

Data

We implement our analysis for four alt-coins

DogeCoin

Universität

¦ürich^{⊍z⊦}

- + Genesis block 2013-12-06 10:25:40 UTC
- + ~ 2.7 M blocks since genesis (one every 1.5 minutes)
- + ~ 5 M "agents"

LiteCoin

- + Genesis block 2011-10-07 07:31:05 UTC
- + \sim 2M blocks since genesis (one every minute)
- + $\sim 22M$ "agents"

7

From micro to macro

First let's check if $\sum_i V_i \rightarrow V = PQ/M$ as predicted

How is V_i distributed?

- + Thin-tailed distributions in general fit poorly
- + Fat-tailed distributions have good fits

Most of the velocity is determined by few agents!

How is V_i distributed?

- + Thin-tailed distributions in general fit poorly
- + Fat-tailed distributions have good fits

Most of the velocity is determined by few agents!

Pareto α s and KS tests

		LTC	DOGE	MONA	FTC
α	Mean	1.69	1.65	1.56	1.62
	Min.	1.44	1.52	1.28	1.27
	Q1	1.64	1.61	1.52	1.52
	Median	1.70	1.65	1.55	1.59
	Q3	1.74	1.68	1.61	1.69
	Max.	1.92	1.80	2.29	2.20
<i>D</i> _{Par}	Mean	0.03	0.03	0.08	0.11
	<i>p</i> > 0.2	92.96%	100.00%	99.92%	94.07%
D_{Exp}	Mean	0.83	0.86	0.83	0.78
	p > 0.2	0%	0%	0%	0%

How is V_i distributed?

...VERY fat tailed!

MicroVelocity

V_i and wealth

What is the relation between V_i and agent's wealth M_i ?

$$V_i(t) = \sum_{\tau=1}^{\infty} \frac{M_i(t)}{M} \frac{1}{\tau} P_i^{(t)}(\tau)$$

V_i and wealth

What is the relation between V_i and agent's wealth M_i ?

$$V_i(t) = \sum_{\tau=1}^{\infty} \frac{M_i(t)}{M} \frac{1}{\tau} P_i^{(t)}(\tau)$$

Transaction networks

Transaction networks

Time aggregation

The time aggregation is largely arbitrary

The larger the time aggregation, the least "causal" the network is. Need to make choices depending on research questions.

Time aggregation

The time aggregation is largely arbitrary

The larger the time aggregation, the least "causal" the network is. Need to make choices depending on research questions.

MicroVelocity is disassortative

On weekly tx networks, we find negative correlation between neighbours' velocities

MicroVelocity is in the core

The fraction of total velocity in the core is much larger than the fraction of nodes in the core

In conclusion

- Some take-home messages:
- + MicroVelocity poses a bridge from micro to macro
- + Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

In conclusion

Some take-home messages:

- + MicroVelocity poses a bridge from micro to macro
- Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

In conclusion

Some take-home messages:

- + MicroVelocity poses a bridge from micro to macro
- Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

In conclusion

Some take-home messages:

- + MicroVelocity poses a bridge from micro to macro
- Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

Coming down the line:

- + Applications to account-based systems like ETH tokens, banks and credit cards
- + Better estimators for time-varying $P_i^{(t)}(\tau)$

In conclusion

Some take-home messages:

- + MicroVelocity poses a bridge from micro to macro
- Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

Coming down the line:

- Applications to account-based systems like ETH tokens, banks and credit cards
- + Better estimators for time-varying $P_i^{(t)}(\tau)$

In conclusion

Some take-home messages:

- + MicroVelocity poses a bridge from micro to macro
- Despite crypto's statutory decentralization, MicroVelocity shows flow is very centralized
- + In other words,

decentralized technology \neq *decentralized economy*

Coming down the line:

- Applications to account-based systems like ETH tokens, banks and credit cards
- + Better estimators for time-varying $P_i^{(t)}(\tau)$

References

- Campajola C., D'Errico M., Tessone C.J. (2022); MicroVelocity: rethinking the Velocity of Money for digital currencies. arXiv preprint, arXiv:2201.13416
- Wang Y., Ding N., Zhang L. (2003); The circulation of money and holding time distribution. Physica A 324(3-4), 665-677
- Pernice I.G.A., Gentzen G., Elendner H. (2019); Cryptocurrencies and the Velocity of Money. Available at SSRN 3499500
- Bovet A., Campajola C., Mottes F., Restocchi V., Vallarano N., Squartini T., Tessone C.J. (2019); The evolving liaisons between the transaction networks of Bitcoin and its price dynamics. *arXiv preprint*, arXiv:1907.03577

Carlo Campajola

Universität Zürich UZH Blockchain Center

campajola@ifi.uzh.ch
C twitter.com/Campa_91