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Abstract

Mutual fund risk-taking via active portfolio rebalancing varies both in the cross-
section and over time. In this paper, I show that the same is true for funds’ off-
balance sheet risk-taking, even after controlling for on-balance sheet activities. For
this purpose, I propose a novel measure of synthetic leverage, which can be estimated
based on publicly available information. In the empirical application, I show that
German equity funds have increased their risk-taking via synthetic leverage from
mid-2015 up until early 2019. In the cross-section, I find that synthetically leveraged
funds tend to underperform and display higher levels of fragility.
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1 Introduction

It is well-established that mutual fund risk-taking varies both in the cross-section and over

time (e.g., Huang, Sialm, and Zhang (2011)). An increased risk-taking is of concern for

policymakers, regulators, and market participants due to its potential to amplify struc-

tural run and liquidity risks within the fund sector (e.g., Goldstein, Jiang, and Ng (2017)).

Prior work on fund risk-taking mainly focuses on active portfolio rebalancing (e.g., reach-

for-yield behavior as in Choi and Kronlund (2018)). In this paper, I acknowledge the

fact that funds may engage in risk-taking by other means and I investigate risk-taking

via off-balance sheet activities (which I refer to as synthetic leverage). I show that funds’

synthetic leverage also displays substantial time-series and cross-sectional variation, even

after controlling for their on-balance sheet activities.

Fundamentally, mutual funds can increase their risk exposures not only by active

portfolio rebalancing but also by means of leverage. While it is well-documented that

financial leverage does not play an important role for the typical fund, since investment

funds generally make very limited use of debt financing1, there is, however, a long-standing

policy discussion as to whether funds engage in risk-taking via synthetic leverage (e.g.,

ECB (2014); IMF (2018)). Broadly speaking, synthetic leverage refers to (mainly off-

balance sheet) activities that tilt an investor’s risk-return profile (Breuer (2002)). The

two most prominent examples of such activities are derivatives trading and, albeit to

a lesser extent, securities financing transactions (SFTs, i.e., repurchase agreements and

securities lending). In line with the idea that fund managers respond to incentives (e.g.,

Chevalier and Ellison (1997, 1999)), anecdotal evidence suggests that both competition

and the current macro-financial environment may induce fund managers to engage in such

activities to take additional risks.2

1Almazan et al. (2004); Boguth and Simutin (2018); Fricke and Wilke (2020).
2See “Securities lending proves lucrative as investors aim for alpha”, FT, April 23rd 2018; “Fund

groups challenged over securities lending practices”, FT, May 11th 2019, and “Mutual funds hit back at
SEC proposal to limit derivative use”, FT, March 30th 2016. Market pracitioners, however, generally
dispute the idea that SFTs could be used for increasing leverage. See “Securities lending: the facts”,
BlackRock, May 2015.
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While questions on synthetic leverage of investment funds have been widely discussed

in policy circles, the academic literature on the topic remains sparse. Two aspects in

particular have impeded a structured investigation of the effects of synthetic leverage

usage: first, data availability issues.3 In particular, data confidentiality aspects make

it difficult, if not impossible, for market participants and fund investors to assess the

structure of a fund’s granular derivatives portfolio. Second, there remains a lack of a

consensus on an economically meaningful measure of synthetic leverage. To fill these

gaps, I propose a measure of synthetic leverage, which can be estimated based on publicly

available data and does not require detailed data on funds’ derivatives/SFT activities.

The fundamental idea of my framework is that a fund’s unobserved actions will affect

the distribution of its realized returns. By finding a suitable benchmark to compare

the realized return (distribution) against, we can uncover the economic effect of a fund’s

unobserved actions. In this regard, the return gap (Kacperczyk, Sialm, and Zheng (2008)),

denoted as ∆, turns out to be very useful. The return gap is the difference between a fund’s

realized gross return (R) and its hypothetical holdings-based return (RH). The holdings-

based return, RH , is the return on the fund’s most recently disclosed asset portfolio. The

return gap is a measure of the net effect of a fund’s unobserved actions, since the realized

return includes all unobserved actions of a fund, while the holdings-based return does not.

My methodology identifies synthetically leveraged funds by comparing the distributions

of RH and R: in the absence of any unobserved actions, I expect the two returns to align

(∆ ≈ 0). On the other hand, if a fund manager engages in unobserved actions to hedge

or take risks (such as derivatives trading), this should have a measurable impact on the

fund’s realized return distribution and lead to systematic differences between R and RH .

For example, for funds that follow a hedging (risk-taking) strategy, the distribution of R

has less (more) probability mass in the tails of the distribution relative to RH . In light of

the broad definition of synthetic leverage given above, risk-taking funds would be those

3Following the global financial crisis, regulators around the world introduced various regulations with
the aim to increase the transparency and robustness of SFT and derivatives markets. For example, the
EU adopted the securities financing transactions regulation (SFTR), which requires investors to submit
regular reports on their trading activites to centralized trade repositories.
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that make use of synthetic leverage, since their unobserved actions increase the variance

of realized returns relative to the holdings-based benchmark. Effectively, this comparison

aims at uncovering the effect of unobserved actions on a fund’s market risk, relative to

the market risk of the fund manager’s underlying asset portfolio.

This simple idea can be brought to the data via dynamic regressions of ∆ on RH . The

estimated coefficient on RH , denoted as βH , makes it possible to place funds on the spec-

trum of hedging (βH < 0) and risk-taking (βH > 0). I propose βH as a natural indicator

for fund-level synthetic leverage usage. Of course, a major concern is that systematic

differences between R and RH could be driven by unobserved actions that are unrelated

to the concept of synthetic leverage, most importantly fund managers’ active portfolio re-

balancing. I tackle this issue in two ways: first, I explicitly control for such actions in my

estimation of βH . For example, I include a fund’s contemporaneous portfolio turnover and

its flows as control variables. Second, I decompose ∆ into its rebalancing/non-rebalancing

components and explicitly adjust ∆ for a fund manager’s active portfolio rebalancing. To

the best of my knowledge, this is the first paper to investigate such a decomposition of the

return gap. Interestingly, I find that active portfolio rebalancing between month t−1 and

t captures only 11% of the overall variation of ∆. In other words, the vast majority of the

(variation of the) return gap cannot be explained by funds’ active portfolio rebalancing.

Using a unique dataset on German equity funds for the period September 2009 to May

2020, I show that my measure of synthetic leverage mainly picks up the effects of funds’

derivatives usage. Of lesser importance are securities lending activities, which is in line

with the idea that SFTs should mainly affect the first moment of the return distribution,

not necessarily the second moment. For my sample, I find that the share of funds that

make use of derivatives and/or securities lending is relatively stable over time. What does

vary strongly is the economic purpose of such activities. In fact, in line with the above-

mentioned anecdotal evidence, I find a relatively steady increase in funds’ risk-taking via

synthetic leverage from 2015 onwards, which suggests that funds’ risk-taking behavior de-

pends on the macro-financial environment. In the cross-section, I find that synthetically
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leveraged funds (those that make use of risk-taking strategies) differ from other funds

across various characteristics. For example, they tend to show higher expense ratios and

larger downside risk compared with other funds. In addition, synthetically leveraged funds

show larger cash ratios, but less liquid asset portfolios (based on their small-minus-big

factor loading). Regarding performance, I find that the returns of synthetically leveraged

funds tend to be negative on a risk-adjusted basis and that they underperform significantly

relative to other funds. This echoes the findings of Huang et al. (2011), who showed that

funds that increased their risk-taking via shifting towards more risky assets also tend to

underperform (see Choi and Kronlund (2018) as well). Lastly, while synthetically lever-

aged funds displayed substantially larger outflows during the COVID-19-induced market

stress period in March 2020, I find that their flow-performance sensitivity does not differ

systematically from that of other funds. However, I provide evidence that synthetically

leverage funds show larger flow externalities, which seems to be concentrated on periods

with high levels of market volatility (as proxied by the VIX). Overall, these results in-

dicate that synthetic leverage should be closely monitored in the future and that more

work is needed to assess whether and how synthetic leverage adds systemic fragility to

the financial sector.

The remainder of this paper is structured as follows: section 2 reviews the related

literature. Section 3 introduces the methodological framework for measuring synthetic

leverage. Section 4 describes the dataset and presents the summary statistics. Section 5

analyzes synthetic leverage both in the cross-section and over time. Section 6 analyzes

differences in fund performance. Section 7 takes a closer look at synthetic leverage and

fund fragility. Section 8 summarizes the main results and concludes.

2 Related Literature

My paper contributes to different streams of the literature. Most importantly, my paper

adds to the existing literature on fund risk-taking. It is widely accepted that performance
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pressure due to both competition and the macro-financial environment may incentivize

risk-taking behavior (e.g., Chevalier and Ellison (1997); Chevalier and Ellison (1999); Fer-

oli, Kashyap, Schoenholtz, and Shin (2014); Chodorow-Reich (2014)). Such risk-taking

behavior has the potential to amplify structural risks in the fund sector (e.g., Chen,

Goldstein, and Jiang (2010); Goldstein et al. (2017)). Following Kacperczyk et al. (2008),

however, much of this literature is concerned with risk-taking via active portfolio rebal-

ancing (e.g., Huang et al. (2011)).4 My paper adds to this literature by investigating

risk-taking not via portfolio rebalancing, but by means of (synthetic) leverage. Since it

is widely documented that investment funds tend to refrain from using financial leverage

(e.g., Boguth and Simutin (2018); Fricke and Wilke (2020)), I concentrate on quantifying

funds’ synthetic leverage. Specifically, my measure of synthetic leverage explicitly focuses

on the (sizeable) residual variation of the return gap that is left after controlling for fund

managers’ portfolio rebalancing. This novel methodological approach differs substantially

from previous work identifying (synthetically) leveraged funds (e.g., Molestina Vivar, We-

dow, and Weistroffer (2020)). In particular, my return gap-based methodology offers a

natural framework that could also be used to place other kinds of institutional investors

on the risk-taking/hedging spectrum.

Relatedly, my paper adds to the literature on unobserved actions of investment funds.

In their seminal paper, Kacperczyk et al. (2008) introduce the return gap as a measure

of the net effect of a given fund’s unobserved actions.5 This literature typically views

the return gap as a measure of skill due to informed portfolio rebalancing. In this paper,

I decompose the return gap to show that the contribution of this (active) rebalancing

component is indeed positive. Overall, however, it explains only a small share of the

4Naturally, much of the reach-for-yield literature focuses on corporate bond funds (e.g., Choi and
Kronlund (2018)). In line with reach-for-yield behavior, Banegas, Montes-Rojas, and Siga (2016) provide
evidence that equity funds receive aggregate inflows when interest rates are low. These inflows are
concentrated on high-income funds, which the authors interpret as reach-for-income behavior. As noted
by Daniel, Garlappi, and Xiao (2021), the reach-for-income hypothesis posits that demand for assets with
high current income, which are not necessarily riskier, increases when interest rates fall.

5Other papers have used the return gap, or variations thereof, to identify window dressing (Meier and
Schaumburg (2006); Agarwal et al. (2011)), changes in fund’s trading costs (Bollen and Busse (2006)),
and differences in indirect expenses between retail-institutional twins (Evans and Fahlenbrach (2012)).

5



variation of the return gap.

This paper also contributes to the literature on SFT/derivatives trading of asset man-

agers, in the sense that my measure of synthetic leverage could capture the economic

effects of such activities. A number of recent papers explore the implications of SFTs

of institutional investors. For example, Kaplan, Moskowitz, and Sensoy (2013) examine

the impact of short selling on asset prices and market quality. Based on a randomized

stock lending experiment with a large, anonymous money manager, the authors find that

supply shocks significantly reduce market lending fees and raise quantities, but have no

impact on asset prices or market liquidity. Focusing on passively managed mutual funds

(including ETFs), Blocher and Whaley (2014) find that these funds can earn significant

revenue from securities lending. The authors also report that fund managers tend to tilt

their portfolios towards stocks with higher lending fees. Similarly, Greppmair, Jank, Saffi,

and Sturgess (2020) find that funds make use of information acquired in equities lending

markets in their portfolio allocation decisions. In particular, funds that lend shares are

more likely to exit positions relative both to stocks they do not lend and to funds that do

not lend. Evans, Ferreira, and Prado (2017) find that funds that lend equities underper-

form otherwise similar funds, which is driven by investment restrictions set by the fund

family that keep funds from selling the stocks.

Regarding funds’ derivatives trading, most of the early literature was concerned with

identifying characteristics that distinguish derivatives users from non-users. In particular,

much attention has been devoted to the question of whether derivatives users tend to

outperform non-users, with most of the evidence suggesting that the returns of these

two groups are not significantly different from each other (e.g., Koski and Pontiff (1999);

Almazan et al. (2004)). More recently, the literature has focused on derivatives trading

of bond funds, in particular how U.S. corporate bond funds positioned themselves in

the credit default swap market before and during the global financial crisis (e.g., Stulz

(2010); Aragon, Li, and Qian (2017); Jiang, Ou, and Zhu (2019)). In a recent paper,

Kaniel and Wang (2020) use a novel granular dataset from the SEC to show that mutual
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funds mainly use derivatives (in particular, swaps) to amplify market exposure, but less

for hedging purposes. In terms of performance, they find that funds that used derivatives

for hedging purposes tended to outperform other funds during the COVID-19 episode.

3 Measuring Synthetic Leverage

The following section lays out the novel framework for measuring synthetic leverage, which

allows me to place funds on the spectrum of hedging versus risk-taking. I should note

that there is, to date, no consensus view on what constitutes a usfeul economic measure

of synthetic leverage. Importantly, in contrast to existing regulatory measures, my ap-

proach has the advantage that it does not require detailed information on derivative/SFT

activities. This is important because, due to confidentiality, such data are generally not

available to market participants and fund investors.

3.1 Institutional Background

Mutual funds are subject to tight regulatory constraints regarding financial leverage. For

European funds, Directive 2009/65/EC relating to undertakings for collective investment

in transferable securities (UCITS) limits funds’ debt financing to 10% of total net assets.

For the U.S., the Investment Company Act of 1940 limits funds’ debt financing to 50%

of a fund’s total net assets. It is widely documented that most funds remain well below

these regulatory thresholds, in many cases even using a zero financial leverage strategy

(e.g., Almazan et al. (2004); Boguth and Simutin (2018); Fricke and Wilke (2020)).

However, funds could lever up their investments by other means, for example by enter-

ing derivatives positions (see Internet Appendix A for a summary of existing regulations

regarding funds’ derivatives exposures in the EU). In fact, derivatives contracts are often

considered a relatively cheap way to express investment views, since such products often

involve only small upfront costs and can also be more liquid than some of the underlying

products. One standard textbook example is a synthetic long position in a stock through
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the combination of put and call options. While showing exactly the same payoff structure

as the underlying stock, this is a levered strategy in the sense that entering the deriva-

tives positions likely involves substantially lower upfront costs. A similar argument can

be made for other kinds of derivatives (such as futures and swaps), which also allow an

investor to take large positions with relatively small initial outlay.

The two main types of SFTs are repurchase agreements and securities lending, which

essential for market participants’ funding and collateralization needs. In an SFT a fund

earns interest (and potentially also appreciation on the collateral) on the loaned securities

(Evans et al. (2017)). SFTs are often reported to be attractive for investment funds, as

they potentially allow funds to generate incremental returns at relatively low risk. In

principle, SFTs can also be used to take leveraged positions, for example, by taking

a long position in one instrument and a short position in another in the expectation

of changes in the yield spread of the two instruments (IOSCO (1999); Committee of

European Securities Regulators (2010)).6 Market pracitioners, however, generally dispute

the idea that SFTs could be used for increasing leverage.7 While the regulatory framework

for UCITS’ leverage acknowledges that SFTs are being used to create leverage, most of

the existing literature concentrates almost exclusively on synthetic leverage via funds’

derivatives exposures.

3.2 Unobserved Actions and the Return Gap (∆)

My framework draws upon the return gap, ∆, of Kacperczyk et al. (2008):

∆t,f = Rt,f︸︷︷︸
Realized

gross return

− RH
t,f︸︷︷︸

Return on
portfolio in t-1

(1)

6Effectively, SFTs extend the balance sheet by the amount of (cash) collateral involved, since the asset
ownership remains with the lender.

7See “Securities lending: the facts”, BlackRock, May 2015.
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where the actual return, Rt,f , is the total return (including dividend payments) before

expenses.8 The holdings-based return on fund’s holdings, RH , is the total return of

a hypothetical buy-and-hold portfolio that invests in the most recently disclosed asset

positions9:

RH
t,f =

J+1∑
j

wt−1,f,jrt,j = w′t−1,frt (2)

where wt−1,f,j is the weight of asset j in fund f ’s portfolio at the end of month t− 1 and

rt,j is the relative return of asset j over the previous month.10 Note that I always include

cash as asset (J + 1), where rt,J+1 equals the 1-month Euribor.

As noted by Kacperczyk et al. (2008), the return gap captures funds’ unobserved

actions and includes hidden costs and benefits. One example is a fund’s interim trades,

which can create or destroy value. Hidden benefits can result from securities lending as

well. Hidden costs can include, among other things, trading costs and commissions, agency

costs, and investor externalities. Derivative exposures can result in costs and benefits,

depending on the performance of individual contracts and the market environment. In

the spirit of Grinblatt and Titman (1993), Kacperczyk et al. (2008) interpret the return

gap as a measure of outperformance: a positive return gap indicates that a given fund

outperformed relative to the benchmark of its most recent portfolio holdings.11 I discuss

additional advantages of using RH as the benchmark in subsection 3.4.

8Fund managers can subtract management fees and other expenses on a regular basis from the assets
under management, which reduces the investor’s net return. Since RH does not include any of these these
expenses, I use the gross return in Eq. (1). Equivalently, I could use the net return and add expenses to
the holding-based return.

9Note that Kacperczyk et al. (2008) define this measure only for (actively-managed) U.S. equity funds,
due to the fact that they obtain data on funds’ asset portfolios from CDA/Spectrum, which includes only
common stock positions and excludes other non-equity holdings.

10Equity returns include dividend payments and are adjusted for stock splits. Bond returns include
both coupon payments and accrued interest (as in Bai, Bali, and Wen (2019)).

11Using data on actively managed U.S. equity mutual funds during 1984–2003, Kacperczyk et al. (2008)
find that the average ∆ is close to zero and thus the aggregate magnitude of unobserved actions is relatively
small in the aggregate. At the same time, there is substantial cross-sectional variation in ∆, indicating
that hidden costs are more important for some funds, while hidden benefits are more pronounced for
others. Moreover, there is evidence that the fund-level ∆ is very persistent, both for the best and worst
performers, and thus likely driven by systematic factors. As such, ∆ helps predict future performance.
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3.3 Hedging Versus Risk-Taking

Depending on the net effect of the above-mentioned unobserved actions, the distribution

of a given fund’s actual returns R can differ systematically from its holdings-based return

RH . Fundamentally, my framework looks at systematic deviations between R and RH in

order to identify synthetically leveraged funds. In fact, the return gap provides a useful

framework in terms of classifying funds into those that appear to use a hedging strategy

(possibly involving derivatives and/or SFTs), a risk-taking strategy (again possibly in-

volving derivatives and/or SFTs), or neither of these two. For example, in the latter case

with no hedging/risk-taking, Ri and RH
i would be closely aligned, so the actual strategy

corresponds to the disclosed portfolio holdings.

Basic idea. Suppose that the fund’s realized return R is the sum of the holdings-based

return RH and the return due to its unobserved actions RU :

R = RH +RU , with RH ∼ iidN(0, σH). (3)

To allow for a general correlation structure between the two components, I specify a linear

relationship:

RU = bU ×RH + ε with ε ∼ iidN(0, σ). (4)

Thus, the fund’s realized return is a noisy version of the holdings-based return:

R = bH ×RH + ε, (5)

where bH = (1 + bU) can be interpreted as a holdings-beta, similar to a standard market-

beta in asset pricing: a value of bH = 1 corresponds to realized returns and holdings-based

returns moving exactly in tandem, while bH > 1 (bH < 1) would indicate that realized

returns vary more (less) than proportionally. In the absence of other factors, differences

between R and RH will be due to a fund manager’s unobserved actions. This is the key
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idea of my methodology.

For convenience, Eq. (5) can be written in terms of the return gap

R−RH = ∆ = (bH − 1)︸ ︷︷ ︸
βH

×RH + ε, (6)

such that a fund’s strategy can be assessed based on the sign of βH .12

An illustrative example. The left panel of Figure 1 shows the corresponding distribu-

tions for βH = −0.4 (green) and βH = 1 (red). Based on these distributions, the strategy

shown in green corresponds to a hedging strategy, since the distribution of R is squeezed

relative to the distribution of RH . Similarly, the strategy shown in red corresponds to a

risk-taking strategy: the realized return distribution has more probability mass on more

extreme outcomes. For the symmetric cases shown here, the right-hand panel plots the

expected relationship between ∆ and RH for the two cases: for hedging (risk-taking)

funds, I expect a significantly negative (positive) relationship. For funds where R does

not differ systematically from RH , the relationship between ∆ and RH would be flat. A

linear regression of ∆ against RH yields slope parameter βH = (bH − 1), shown as dotted

lines in the right-hand panel.

Estimation details. For each fund f , I estimate the dynamic βH parameter using the

following regression:

∆t,f = αf + βHf ×RH
t,f + γi ×Xt,f + εt,f ,

with Xt,f as a T×K matrix that includes the set of control variables (more on this below).

Of course, systematic deviations between R and RH can be driven by a number of actions

12Note that Corr(R,RH) = (βH+1)√
(βH+1)2+v

with v = (σ/σH)2. The correlation is therefore driven both

by βH and the (relative) variance of ε and the holdings-based return. Note that v can play an important
role, since lim

v→∞
Corr(R,RH) → 0. Intuitively, ε is the innovation term of a given fund’s unobserved

actions. The larger the variance of this term, the less correlated the two return series will be.
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Figure 1: Illustration of hedging, risk-taking, and the return gap. Left: distributions for RH and R
for different βH . Right: relationship between ∆ and RH . Parameters: σH = 0.1, σ = 0.02, βH = −0.4
(green) and βH = 1 (red).

which are unrelated to the idea of synthetic leverage.

In order to interpret βH as a measure of synthetic leverage, I aim to control for these

actions and restrict my attention only on the residual variation of ∆. In this regard,

previous work on the return gap (e.g., Kacperczyk et al. (2008)) suggests that the key

aspect that may contaminate the estimated βH is a fund manager’s portfolio rebalancing.

The idea is that, when a fund manager has shifted a large part of the asset portfolio during

month t− 1 and t, R may not be close to RH , because the latter is based on an outdated

portfolio.13 I therefore control for a fund manager’s active trading during a given month

(which may or may not induce systematic deviations between R and RH) in two ways.

First, I exclude the effect of portfolio rebalancing on ∆ itself. Given that I observe funds’

granular asset portfolios at the end of each month, I decompose the return gap as follows

(cf. Choi and Kronlund (2018) and Barbu, Fricke, and Moench (2020)):

∆t,f = (Rt,f −RHt
t,f )︸ ︷︷ ︸

∆Contemp.

+ (wt,f −wb
t−1,f )

′rt︸ ︷︷ ︸
∆Active

+ (wb
t−1,f −wt−1,f )

′rt︸ ︷︷ ︸
∆Passive

, (7)

13In fact, a skilled fund manager may be able to consistently beat its holdings-based benchmark by
means of intra-month securities trading, which would be picked up by the intercept.
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where RHt
t,f = w′t,frt is the holdings-based return based on the portfolio in t, wb

t−1,f denotes

fund f ’s portfolio weights from month t− 1 evaluated at prices in t, and bold-face letters

indicate vectors. The first component (∆Contemp.) is the return gap with the portfolio in

t as the benchmark. Note that ∆Contemp. correponds to the negative of the backward-

holdings return gap of Agarwal et al. (2011), who use this component to identify funds

engaging in window dressing. The second component (∆Active) corresponds to active

rebalancing: it is the return difference of the fund’s portfolio in t and the portfolio in

t−1, both evaluated at prices in t. The third component (∆Passive) corresponds to passive

rebalancing: it is defined as the difference of the portfolio in t− 1 evaluated at prices in

t and of the same portfolio evaluated at prices in t− 1. In everything that follows, I use

(∆−∆Active) as the dependent variable and estimate the following regression:

(∆−∆Active) = αf + βHf ×RH
t,f + γf ×Xt,f + εt,f , (8)

As such, I explicitly control for a fund manager’s active portfolio rebalancing between

month t− 1 and t, and focus only on the remaining variation.

Second, I also include contemporaneous fund flows, both raw and squared (Flowst and

Flows2
t ), and the fund’s contemporaneous portfolio turnover (Turnovert) in the set of con-

trols X in regression (8). Since potential trading costs and flow externalities should be pro-

portional to the fund’s porfolio liquidity, I also include the lagged portfolio Hirschmann-

Herfindahl-Index (HHIt−1)14 and the lagged cash ratio (CashRatiot−1) as proxies for funds’

portfolio liquidity. I also include the VIX (lagged and contemporaneous) to control for

the general market environment and market illiquidity. Lastly, I include lagged financial

leverage (Leveraget−1), the lagged fund TNA (log(TNAt−1)), and the lagged return gap

(∆t−1)

In everything that follows, the baseline approach consists of estimating βH based

on 36-month rolling-windows using ordinary least squares (OLS). For all cross-sectional

14Pastor, Stambaugh, and Taylor (2020) suggest that more diversified portfolios should be more liquid.
Goldstein et al. (2017) interpret the HHI as a measure of potential externatilities.
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comparisons, I sort funds into quintiles based on their estimated βH separately for each

month t. This allows me to compare the characteristics of risk-taking funds (those in

Quintile 5) or hedging funds (those in Quintile 1) with other funds. Given that funds in

the intermediate groups (in particular those in Quintile 3) are those for which R ≈ RH ,

they serve as the natural reference group, since their performance is consistent with the

reported underlying asset portfolios.

3.4 Discussion

My methodology identifies funds that follow risk-taking or hedging strategies, with the

main information coming from funds’ asset portfolios and their realized returns. Clearly,

risk-taking funds are of particular interest, since their unobserved actions increase the

variance of realized returns relative to their own holdings-based benchmark. Conceptually,

these are the funds that make particular use of synthetic leverage. On the other hand,

significant hedgers could be interpreted as using negative synthetic leverage in the sense

that their unobserved actions tend to reduce the variance of realized returns relative to

their holdings-based benchmark.

My methodology shares some similarities with previous attempts to identify (synthet-

ically) leveraged funds. For example, Molestina Vivar et al. (2020) assume that funds

which both make use of derivatives and display a market beta above one are likely candi-

dates. However, their approach neither controls for funds’ portfolio rebalancing, nor takes

the holdings-based return as the benchmark. This could possibly hamper the empirical

identification of synthetically leveraged funds.15

While it would be possible to estimate βH using alternative benchmark returns, RH is

a rather attractive measure for a number of reasons: first, by using each fund’s holdings-

based return series as the benchmark, my methodology explicitly accounts for on-balance

sheet risk-taking. In other words, my measure of synthetic leverage focuses on additional

15Across all fund-month observations, I find a Pearson-correlation of 0.31 between my baseline βH and
an alternative β that does not include any controls, does not account for active rebalancing, and uses the
market return as the benchmark.
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risk-taking that cannot be explained by the fund manager’s reported asset portfolios

or the portfolio rebalancing activities. Second, granular data on individual funds’ asset

portfolios are available to policymakers and regulators. These data are of very high quality

due to regular quality/consistency checks.16 For example, a fund that is registered as an

emerging market fund should report portfolio holdings consistent with its investment

mandate. From a consumer-protection perspective, RH therefore serves as a reasonable

benchmark that the realized returns R can be compared against. My approach allows me

to identify cases where the realized fund returns are very different from this benchmark.

Of course, such deviations may be consistent with a fund’s communicated strategy (e.g.,

the use overlay techniques), but it is important to document such deviations. Third, not

all funds have specific benchmarks that they wish to track/outperform. For example, a

fund with an absolute performance goal is aiming to provide its investors with stable and

positive returns across different market periods. In these cases, differences between the

realized performance and the holdings-based benchmark would still help in uncovering

a fund’s unobserved actions. Third, regulatory data on whether a given fund targets

the relative outperformance of a specific benchmark is not always available. While this

information could be taken from different market databases (e.g., Morningstar), data

coverage may be problematic, which is not the case for RH . Using RH as the relevant

benchmark has the additional advantage that it explicitly takes into account a fund’s

most recent actual portfolio holdings, which may not always replicate exactly the fund’s

desired benchmark index. Lastly, my return gap-based methodology explicitly accounts

for a fund manager’s active portfolio rebalancing. This is important, because a fund

whose portfolio manager trades very actively should, in the absence of other unobserved

actions, not be classified as being synthetically leveraged.

My approach is also related to the regulatory VaR approach for estimating a fund’s

global derivatives exposure (see Internet Appendix A), since it is also based on differences

between realized returns and those of a benchmark portfolio. One major difference is that

16In contrast, some studies have raised doubts about the portfolio holdings data reported in popular
market databases, e.g., Chen, Cohen, and Gurun (2021).
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my approach makes use of the full distribution of ∆ (or the individual components R and

RH) and models the conditional mean, E(∆|RH , X), which treats positive and negative

returns symmetrically. However, my framework is general enough to accommodate asym-

metric modeling approaches. One example would be to use quantile regressions, which

model a conditional lower percentile of the distribution of ∆ (or its adjusted version). This

would be particularly relevant if policymakers and fund investors are more interested in

large negative realizations of ∆, in which case realized returns would be substantially

lower than the holdings-based benchmark. I leave such an extension for future research.

4 Data and Summary Statistics

4.1 Data

The dataset consists of all open-ended funds reporting to the investment fund statistics

(IFS) of the Deutsche Bundesbank. In principle, my methodology can be applied to a

wide variety of fund types. Here, I restrict my analysis to equity mutual funds, which

make up roughly 37% of the German mutual fund sector’s TNA.17 I use monthly data

and conduct my analysis at the fund level. Fund level data are obtained by aggregating

data across share-classes, with all fund characteristics that vary across share classes (e.g.,

expense ratios) calculated as the TNA-weighted averages across the fund’s share classes.

Following Kacperczyk et al. (2008), I explicitly keep passively managed funds (both index

funds and exchange-traded funds, ETFs) which make up 14% of the funds in my final

sample. Hence, the vast majority of funds are actively managed. I drop sector funds,

emerging market funds, and funds with unknown investment region. The vast majority of

funds in my sample have investment region Europe (57%) or global (32%). The remaining

17Compared with the U.S., the German investment fund sector is peculiar in the sense that it consists
of two very different sub-sectors: first, Publikumsfonds are akin to traditional open-ended mutual funds,
which are open to both private and institutional investors. Second, Spezialfonds are specialized investment
vehicles for institutional investors, which are generally not available to retail investors. These institutional
funds are typically tailored to the specific needs of a very small number of large investors, such that run
risks should be less relevant for these institutional funds. As of end-2019, institutional funds made up
roughly 77% of the German fund sector’s total assets under management (see Fricke and Wilke (2020)).

16



funds focus on Asia (6%) and North America (5%). The vast majority of funds in my

sample (82%) focus on large caps and the remainder focuses on small/mid caps (10%)

or does not specify the focus (8%). Following the literature, I drop very young (younger

than two years) and very small funds (TNA < e5 mllion). I apply the TNA reversal filter

of Pastor, Stambaugh, and Taylor (2015) and winsorize flows at the 1st/99th percentile.

The IFS contains information on funds’ granular portfolio holdings from September

2009 onwards. The IFS also contains time-varying (aggregated) information on funds’

derivatives and securities lending activities, which is crucial for validating my method-

ology. Funds report two items that are related to the aggregated assets and liabilities

from derivatives (in Euros). From these variables, I construct a weighted indicator,

ShareDerivativest,f , which is the sum of the aggregated derivatives assets and liabili-

ties relative to a fund’s TNA. I also construct a binary indicator whether fund f uses

derivatives in month t, I(Derivativest,f ). These two indicators can be seen as the inten-

sive and the extensive margin of funds’ derivatives usage and are available for the full

sample. From December 2014 onwards, the IFS also contains information on funds’ secu-

rities lending activities, and I construct a binary indicator on whether fund f is active in

securities lending market in month t, I(SecLendingt,f ).

I augment the IFS data with several other datasets: first, I collect fund-specific in-

formation from Morningstar. Most importantly, the IFS does not contain information on

expense ratios, which are available in Morningstar. I also use information on gross and

net returns, flows, and a number of other fund-specific characteristics from Morningstar.

Second, I use granular information on the individual securities in funds’ asset portfolios

from the Eurosystem’s Centralized Securities Database (CSDB). Third, I use the German

Securities Holdings Statistics (SHS) to obtain information on the ownership composition

for each investment fund over time at the sectoral level based on the European System of

Accounts (ESA).

My sample covers 465 funds over the period September 2009 to May 2020. The

sample is rather representative, since I cover an average of 89% of the TNA of German
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equity mutual funds. I lose the first three years of data (and a number of funds with

insufficient observations) since I estimate βH over rolling-windows of 36 months, such

that most analyses start in October 2012. Overall, I end up with 20,838 fund-month βH

observations for 327 unique funds.

4.2 Summary Statistics

Panel A of Table 1 shows the summary statistics for the main variables of interest. The

first row shows that synthetic leverage, βH , is slightly positive at 0.03 but close to zero

on average. This is not surprising given that the raw correlation between R and RH is

0.97 across all fund-month observations. I will take a closer look at the cross-sectional

and time series variation of βH in the next subsection.

∆ Components. In line with the statistics reported by Kacperczyk et al. (2008), the

average return gap ∆ tends to be small, and in fact, as shown in Panel B, not significantly

different from zero (the results are based on the time series of the cross-sectional equal-

weighted/TNA-weighted means of ∆). Moreover, in line with Agarwal et al. (2011),

∆Contemp. is negative on average but not significantly different from zero. This suggests

that funds tend to rebalance their portfolios from month t − 1 to t towards stocks that

tend to perform well. In fact, the active rebalancing component (∆Active) is significantly

positive at all standard significance levels, which suggests that fund managers’ rebalancing

may display some level of skill, or at the very least, evidence of trend-following behavior.

The last row of Panel B shows that the return gap adjusted for active portfolio rebalancing

(∆−∆Active) is indistinguishable from zero.

As discussed in Section 3, to address concerns that my measure of synthetic leverage

could pick up funds’ (active) portfolio rebalancing, I use (∆ −∆Active) as the dependent

variable in regression (8). An obvious question is how much the three components in

Eq. (7) contribute to the overall variation of ∆. As a first step, Panel C of Table 1 reports

the cross-correlations between these components across all fund-months: ∆ is strongly
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19A - Summary Statistics Mean Std. dev. Median Q25 Q75
βH 0.03 0.11 0.01 -0.08 0.16
R (%) 0.77 4.15 1.19 -4.36 5.12
Rnet (%) 0.66 4.14 1.07 -4.48 5.01
RH (%) 0.74 4.02 1.11 -4.19 5.03
∆ (%) 0.03 0.83 0.04 -0.81 0.90
∆Contemp. (%) -0.40 0.95 -0.32 -1.42 0.55
∆Active (%) 0.06 0.47 0.00 -0.25 0.45
∆Passive (%) 0.37 0.28 0.30 0.15 0.62
Age (years) 18.98 12.50 16.00 7.42 37.67
CashRatio (%) 3.38 4.72 1.69 0.17 8.81
I(ETF / index fund) 0.15 0.35 0.00 0.00 1.00
Flows (%) -0.08 3.78 -0.16 -2.38 2.35
HHI (%) 2.57 1.59 2.33 0.84 4.58
Leverage (%) 100.09 0.60 100.00 100.00 100.10
TNA (× million e) 493.51 1240.54 113.15 17.98 1200.37
Turnover (%) 4.42 8.10 1.95 0.00 10.19
ShareDerivatives (%) 27.24 90.83 0.00 0.00 74.23
I(Derivatives) 0.44 0.50 0.00 0.00 1.00
I(SecLending) 0.23 0.42 0.00 0.00 1.00

B - Significance test Time series average
(s.e.)

∆ (%) Mean 0.02
(0.02)

TNA-weighted Mean 0.05*
(0.03)

∆Contemp. (%) Mean -0.42
(0.12)

TNA-weighted Mean -0.33
(0.09)

∆Active (%) Mean 0.06***
(0.01)

TNA-weighted Mean 0.04***
(0.01)

(∆−∆Active) (%) Mean -0.04
(0.03)

TNA-weighted Mean 0.01
(0.03)

C - Correlation matrix ∆ ∆Contemp. ∆Active ∆Passive

∆ 1 0.865*** 0.108*** -0.030***
∆Contemp. - 1 -0.341*** -0.260***
∆Active - - 1 -0.029***
∆Passive - - - 1

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1: Panel A shows the summary statistics, based on all fund-month observations during the period
2009/09-2020/05. Shown are the mean, standard deviation, median, and the bottom and top quartile
for the following characteristics: βH is the coefficient on RH from the fund-specific, 36-month rolling
window regression (8); R is the realized gross return; Rnet the realized net return (after expenses and
trading costs); RH the holdings-based return; ∆ is the return gap. ∆Contemp., ∆Active, and ∆Passive are
the three components of the return gap as defined in Eq. (7). All return-based indicators are shown as
monthly percentages. Age is fund age in years; CashRatio is the share of cash holdings relative to a fund’s
assets under management; Flows are monthly net flows; HHI is the Hirschmann-Herfindahl Index based
on funds’ portfolio weights; Leverage is the ratio of total assets to TNA; Turnover is a fund’s portfolio
turnover rate as defined in Pastor et al. (2020). ShareDerivatives is the sum of the reported derivatives
position (in Euros) on both the asset and liability side of the balance sheet, relative to the fund TNA.
Panel B reports standard significance tests (using Newey-West standard errors with 36 lags) for the time
averages of the (weighted) cross-sectional ∆, ∆Contemp., and ∆Active, respectively. Panel C shows the
cross-correlations between the individual ∆ components across all fund-months.



positively correlated with ∆Contemp., but the correlation with the two rebalancing compo-

nents is much smaller and, in the case of ∆Passive, even slightly negative. Interestingly,

the correlation between ∆Contemp. and the two rebalancing components is around -0.3 in

both cases.

(a) Cross-section (b) Time series

Figure 2: Shapley values in the cross-section (left) and in the time series (right). Panel (a) shows the
cross-sectional distribution of the relative contribution for the three components of ∆ (as measured by
the Shapley value), using standard boxplots. For each fund f with at least 36 monthly observations,
I estimate the corresponding Shapley values over the full sample. Panel (b) shows the results when
estimating Shapley values based on pooling observations across all funds over rolling-windows of 24
months.

As a second step, I also explore the relative importance of the different components

using Shapley value regressions (see Internet Appendix B for details). Fundamentally,

Shapley value regressions quantify how much of the variation of a given variable y is due

to its individual components x1, x2, . . . , xK . Pooling across all fund-month observations, I

find that ∆Contemp. accounts for approximately 86% of the variation of ∆. The remaining

variation is largely due to ∆Active (11%), whereas ∆Passive plays only a minor role (3%).18

Of course, pooling observations may hide both cross-sectional and time series heterogene-

ity. With regard to the cross-section of funds, Figure 2 (a) shows that the pooled results

18These results are robust to using alternative approaches. For example, using a variance decomposition
along the lines of Duarte and Eisenbach (2020) yields very similar results. The main advantage of Shapley
value regressions is that the (variance) contributions of all variables are non-negative, which is not the
case for the variance decomposition.
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continue to hold when applying the Shapley value regressions separately for each fund.

While the boxplots suggest that there are indeed some funds for which ∆Active plays a

more important role (at the expense of ∆Contemp.), for the vast majority of funds ∆Contemp.

is by far the dominant component.19 With regard to the time dimension, Figure 2 (b)

shows the dynamic Shapley values, which are estimated based on pooling observations

across all funds over rolling-windows of 24 months. Again, it becomes clear that ∆Contemp.

is by far the dominant component in terms of the overall variation of ∆. However, the

relative contribution of the active rebalancing component appears to have increased from

2014 onwards, with values close to 16% at the end of 2019. In other words, over time

funds’ active portfolio rebalancing explains a larger share of the overall variation of the

return gap. In future work, it would be interesting to relate the importance of the different

components to the macro-financial environment.

5 Synthetic Leverage of Equity Mutual Funds

5.1 Cross-Sectional and Time Series Variation of βH

I now take a closer look at synthetic leverage both in the time series and in the cross-

section. In this regard, Figure 3 point towards substantial variation along both dimen-

sions: the black line shows the dynamics of the cross-sectional median βH , and the dark

blue (light blue) areas indicate the 25th/75th (10th/90th) percentiles of the distribution.20

The solid red line (corresponding to the right y-axis) shows the relative number of funds

with a positive βH parameter for each cross-section. Overall, the dynamics of βH appear

to depend on the macro-financial environment: up until 2015, there was a decreasing

trend in the share of funds with a positive βH , dropping to roughly 30% in mid-2015.

Afterwards, there was a relatively steady increase with close to 65% of the funds leaning

19Reassuringly, Figure 7 in the Internet Appendix B shows that the boxplots look very similar for funds
from different βH quintiles. In particular, the active rebalancing component does not appear to show a
systematically higher relative contribution for risk-taking funds.

20The goodness-of-fit of regression (8) is also reasonable. Over the full sample, the cross-sectional
median R2 ranges between 36% and 49%, with an average value of 42%.
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towards risk-taking strategies in late 2018.

Figure 3: Cross-sectional distribution of βH over time. Left-hand y-axis: different percentiles of βH

(the median is shown as the black line). Right-hand y-axis: the solid red line shows that relative number
of funds with positive βH (Share βH > 0).

Interestingly, most of the time series variation appears to come from changes in the

upper tail of the distribution of βH , whereas the lower tail appears more stable. Note

that, while some jumps in the VIX correspond with related movements in βH , the con-

temporaneous correlation between the median βH (black line) and the contemporaneous

VIX is in fact negative at -0.15.21 However, the correlation between the first-differences

of the two variables is substantially positive at 0.18, which provides first evidence that

changes in βH are somewhat procyclical.

5.1.1 Characteristics of Synthetically Leveraged Funds

I now turn to cross-sectional analyses regarding synthetic leverage. I will start with

showing that fund-level synthetic leverage is rather persistent and then analyse the char-

acteristics of risk-taking funds (those with high levels of synthetic leverage).

21While I control for the VIX in the estimation of βH , this is not a mechanical result and I find a
similarly low correlation when excluding the VIX as a control variable in the estimation.
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Persistence. By construction, my measure of synthetic leverage is highly persistent at

short horizons due to the use of overlapping data. Table 2 illustrates that βH is also

persistent for longer horizons. In particular, it shows that funds in extreme deciles are

substantially more likely to stay in these deciles three years later. For example, funds

that are in quintile 5 in month t have a 39% probability of being in the same quintile

36 months later. The same can be observed for hedging funds, albeit with a somewhat

lower probability of 25%. Note that these probabilities also indicate that funds may

not follow the same strategy over time, but appear to adjust these as a function of the

prevailing macro-financial conditions. The last column shows that attrition rates are very

similar across deciles. For the sake of completeness, Panel B of Table 2 shows similar

results using a more coarse-grained classification approach. Overall, despite focusing on

off-balance sheet activities, these findings closely match those of Huang et al. (2011) both

qualitatively and quantitatively.

Transition probabilities (in %)
A t+ 36

Quintile(βH) 1 2 3 4 5 Attrition

(Hedging) (Risk-taking)

1 (Hedging) 25.1 20.1 20.0 13.8 6.6 14.4
2 20.1 25.9 23.9 11.0 4.8 14.4

βHt 3 16.3 18.7 19.2 17.8 13.6 14.4
4 9.6 12.7 14.4 22.5 26.4 14.4

5 (Risk-taking) 5.9 5.7 10.7 23.8 39.4 14.5

B t+ 36
βH ≤ 0 βH > 0 Attrition

t βH ≤ 0 53.0 32.9 10.6
βH > 0 25.5 59.8 14.7

Table 2: Persistence of βH . Panel A shows the transition probability of funds between different quintiles
of βH in month t and t+36, respectively. Panel B shows the persistence of the sign of βH over a 36-month
window.

Validation. My methodology seeks to identify funds that, through their unobserved

actions, follow risk-taking (or hedging) strategies. The key suspects of such unobserved

actions are derivatives usage and, to a lesser extent, securities lending. Market reports

indicate that both derivatives usage and securities lending have become more prevalent in

the asset management sector over recent years. As shown in Table 1, these two activities
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are also important for German investment funds: across all fund-month observations,

44% (23%) of funds report making use of derivatives (securities lending). Figure 4 shows

the number (left) and the aggregated TNA (right) of funds make use of such activities.

Over the full sample, during each month around 43% of funds reported making use of

derivatives, 21% of funds reported making use of securities lending, and 13% reported

making use of both of these activities. In terms of relative TNA, the average shares of

these funds are even larger at 54%, 60%, and 37%, respectively.22 Hence, funds that

make use of these kinds of activities are indeed sizeable.23 Note that, while Figure 4 does

not point towards a notable increase in terms of derivatives usage/securities lending over

my sample period, the results in Figure 3 indicate a strong time variation in terms of

the purpose for which funds make use of these activities. In fact, from 2015 onwards,

risk-taking motives appear to have become more prevalent.

I now take a closer look at the characteristics of funds in the different βH quintiles.

Table 3 shows the results from a univariate analysis, where I show the average character-

istics of (TNA-weighted) portfolios of funds in the different quintiles. The first 5 columns

show the time series averages (standard errors in parentheses) and the last two columns

show significance tests on the differences between funds in quintiles 1 and 3, and funds

in quintiles 5 and 3, respectively (based on Newey-West standard errors with 36 lags).

All variables denoted with index t − 35 : t are calculated as averages over 36 monthly

observations, with Sd denoting the standard deviation and DownsideRisk the 5%-Value

at Risk (in absolute terms), which is a proxy for a fund’s tail risk (cf. Agarwal, Ruenzi,

and Weigert (2017)).

The results suggest that risk-taking funds (those in quintile 5) indeed differ from other

funds along various characteristics. For example, risk-taking funds display higher turnover

22These statistics are based on assessing whether a given fund reports making use of derivatives during
a specific month. When classifying funds as derivatives users/securities lenders, if they report making
use of these activities at least once during my sample, the numbers become even larger. In this case 79%
of the funds in my sample report making use of derivatives, amounting to an average TNA share of 91%.
This suggests that most funds make use of derivatives in one form or another during my sample period.

23Interestingly, the number of funds that make use of derivatives is substantially larger than the number
of funds using securities lending (left-hand panel of Fig. 4), but their aggregate TNA is roughly the same
(right-hand panel). Hence, relatively larger funds tend to be active in the securities lending market.
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Characteristics Quintile(βH)
(univariate) 1 2 3 4 5 Diff: 1-3 Diff: 5-3

(Hedging) (Risk-taking)
Sd(Rt−35:t) 3.876 4.129 3.780 3.714 4.220 0.096 0.440***

(.039) (.058) (.046) (.039) (.069) (.038) (.044)
Sd(RH

t−35:t) 3.951 4.145 3.633 3.458 3.620 0.317** -0.014
(.038) (.058) (.042) (.033) (.056) (.041) (.041)

Sd(∆t−35:t) 0.657 0.527 0.701 0.786 1.047 -0.044 0.346***
(.007) (.009) (.021) (.015) (.023) (.022) (.012)

DownsideRisk(Rt−35:t) 5.755 6.120 5.632 5.649 6.320 0.122 0.687***
(.073) (.095) (.103) (.116) (.125) (.082) (.071)

DownsideRisk(RH
t−35:t) 5.844 6.163 5.458 5.320 5.536 0.386** 0.079

(.071) (.094) (.09) (.089) (.096) (.075) (.072)
DownsideRisk(∆t−35:t) 0.939 0.655 0.960 1.161 1.696 -0.021 0.736***

(.021) (.015) (.022) (.021) (.048) (.033) (.035)
beta - MKT 1.057 1.155 1.094 1.108 1.249 -0.037 0.154**

(.006) (.007) (.007) (.006) (.012) (.01) (.009)
beta - HML 0.027 0.014 -0.059 -0.113 -0.100 0.086 -0.041

(.012) (.008) (.011) (.007) (.012) (.02) (.008)
beta - SMB -0.097 -0.107 -0.035 -0.004 0.049 -0.062 0.084**

(.009) (.011) (.011) (.009) (.014) (.016) (.009)
beta - UMD 0.001 0.021 0.015 -0.022 0.007 -0.014 -0.009

(.005) (.004) (.004) (.005) (.005) (.005) (.005)
Age 19.693 18.812 26.681 34.394 37.934 -6.988 11.253

(.599) (.381) (.631) (.695) (.378) (1.104) (.851)
CashRatio 1.931 1.296 2.836 4.344 4.851 -0.906 2.015*

(.045) (.061) (.115) (.13) (.097) (.13) (.152)
Expense Ratio 0.986 0.682 1.173 1.439 1.470 -0.187 0.297**

(.018) (.025) (.023) (.011) (.006) (.032) (.02)
I(ETF/Index fund) 0.418 0.639 0.282 0.063 0.017 0.136* -0.265

(.012) (.019) (.017) (.009) (.002) (.023) (.016)
Flowst−35:t 0.003 0.533 0.352 0.151 0.091 -0.349 -0.261

(.033) (.05) (.042) (.035) (.023) (.061) (.038)
Sd(Flowst−35:t) 2.871 4.436 2.367 1.881 2.132 0.503** -0.235

(.073) (.134) (.063) (.052) (.063) (.105) (.09)
Leveraget−35:t 100.066 100.047 100.084 100.099 100.089 -0.018 0.006

(.003) (.003) (.005) (.004) (.004) (.005) (.006)
I(Leveraget−35:t) 0.721 0.856 0.778 0.836 0.920 -0.057 0.142**

(.01) (.007) (.014) (.01) (.006) (.015) (.016)
MinInvAmount 121.810 36.384 31.004 92.988 22.329 90.806 -8.674

(6.716) (6.537) (4.358) (12.606) (4.516) (7.276) (6.496)
MorningstarRating 3.022 3.455 3.418 3.481 3.410 -0.396 -0.008

(.026) (.027) (.03) (.037) (.027) (.04) (.032)
Family TNA 0.109 0.077 0.101 0.085 0.055 0.008 -0.046

(.004) (.002) (.003) (.006) (.001) (.006) (.003)
TNA 2.247 5.253 2.652 2.950 2.788 -0.406 0.136

(.155) (.232) (.1) (.119) (.123) (.187) (.151)
Turnovert−35:t 2.882 1.727 2.779 3.548 3.471 0.103 0.693***

(.083) (.065) (.062) (.047) (.047) (.128) (.063)
ShareDerivativest−35:t 0.417 0.141 0.231 0.288 0.422 0.185** 0.190**

(.007) (.006) (.014) (.012) (.01) (.012) (.008)
I(Derivativest−35:t) 0.645 0.630 0.814 0.879 0.943 -0.169 0.129**

(.016) (.02) (.008) (.007) (.002) (.014) (.009)
I(SecLendingt−35:t) 0.346 0.480 0.483 0.525 0.626 -0.137 0.143*

(.022) (.028) (.03) (.031) (.035) (.018) (.015)
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 3: Characteristics of risk-taking funds (univariate analysis). The first five columns show the
average characteristics of (TNA-weighted) portfolios of funds in the different quintiles, based on the
classification in the previous month t− 1. The last two columns show significance tests on the differences
between funds in quintiles 1 and 3, and funds in quintiles 5 and 3, respectively (based on Newey-West
standard errors with 36 lags).



Figure 4: Number of funds (left) and aggregate TNA (right) over time. Results shown for all funds,
funds that reported using derivatives, securities lending, or both of these activities, separately for each
month. Note: information on securities lending activities is available from December 2014 onwards (based
on IFS).

ratios, larger expense ratios (in line with Huang et al. (2011), possibly due to their more

complex trading strategies), and slightly larger cash ratios (possibly to meet margin calls

and investor redemptions). Risk-taking funds are more likley to make use of financial

leverage (extensive margin, I(Leverage)), but not on the intensive margin (Leverage).24

Interestingly, compared with funds in quintile 3, risk-taking funds display a larger

volatility of their realized returns (but not their holdings-based returns) and their return

gap. Similarly, risk-taking funds also display significantly larger downside risk for these

two measures, such that the 5% VaR is significantly larger by around 0.7% compared

to funds in quintile 3. These results suggest that risk-taking funds’ asset portfolios are

comparable to those of other funds, since both the volatility and the downside risk of

the holdings-based return does not differ systematically. Table 3 also shows the factor

loadings for the Carhart (1997) four factor (4F) model, namely excess return on the market

(MKT), small minus big (SMB), high minus low (HML), and up minus down (UMD).25

24As shown in Table 1, financial leverage (total assets/TNA) generally does not appear to play a big
role in my sample. For example, the median value is 100%, indicating that most funds show zero leverage.
This is in line with Boguth and Simutin (2018).

25Data on regional factors come from Ken French’s website.
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Risk-taking funds display a significantly larger market beta and a larger exposure to small

stocks, which are likely to be less liquid.

With regards to funds’ unobserved actions, I find that risk-taking funds tend to be

significantly more likely to report using both of these activities, with the results on secu-

rities lending being somewhat weaker. For example, with regard to the extensive margin,

risk-taking funds have a 94% (62%) probability of reporting using derivatives (securities

lending), compared with 81% (48%) for funds in quintile 3. Similarly, risk-taking funds

also display a larger ratio of derivatives relative to fund TNA (ShareDerivatives), at close

to 0.4% compared to funds in quintile 3 (0.2%).26 However, it should be clear that these

numbers are relatively small, which suggests that purely focusing on reported derivatives

exposures may be misleading when assessing their economic effect. Overall, my measure

of synthetic leverage therefore appears to be mainly driven by funds’ derivatives trading,

but less by securities lending.27

5.1.2 A Closer Look at Fund Style

The results from the previous subsection showed that risk-taking funds differ from other

funds across various characteristics. Here I take a closer look at the classification results

for different fund categories along several dimensions of fund style. For example, Table 3

shows that risk-taking funds are rarely passively managed funds (which are all ETFs in

my sample), even though the difference to the baseline category is not significant. Equity

ETFs have grown substantially over my sample period: within the category of equity

mutual funds, ETFs had a market share of 16% (in terms of relative TNA) in September

2009, which rose to 22% in December 2019. Similarly, the number of equity ETFs in

my sample increased from 29 to 57 over the same period. Interestingly, practically all

26As a robustness check, in the Internet Appendix C, I move beyond the univariate approach and
estimate a multinominal logistic regression, which confirms the key finding that risk-taking funds are
more likely to make use of derivatives. On the other hand, there is no significant difference regarding
securities lending.

27To assess the relative importance of these activities and their relative contribution to synthetic
leverage, additional data would be needed that allow track the performance of a fund’s derivatives portfolio
over time (e.g., as in Kaniel and Wang (2020)).
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equity ETFs/ Index funds report that they are physically-replicating, while synthetically-

replicating funds are virtually non-existent. In line with these numbers, I find that the

vast majority of ETFs/ Index Funds (85% across the full sample) end up in βH-quintiles

1-3. In other words, passsively managed funds rarely make use of risk-taking strategies.

In line with previous work (e.g., Greppmair et al. (2020)), I find that passively managed

funds have a higher propensity to engage in securities lending activities (31% probability

across the full sample, compared with 17% for actively managed funds). Interestingly,

this is not the case for derivatives usage, where passively managed funds actually have a

lower propensity of engagement (probablities of 16% versus 47% across the full sample).

The second dimension of interest with regards to fund style is a fund’s Global Category

as reported in Morningstar. In line with the dominance of large cap funds, the aggregate

pictures are dominated by funds from this category. Interestingly, funds that do not

restrict themselves to only large caps or only small/mid caps rarely tend to make use of

risk-taking strategies, but rather appear to employ hedging strategies (more than 35% of

all fund-month observations for this group are in quintile 1). By contrast, small/mid cap

funds have a somewhat higher propensity to end up in quintile 3 (27%), compared with

the extreme quintiles 1 (13%) and 5 (18%). In other words, the returns of these funds are

broadly in line with their reported asset portfolios.

Lastly, I also explored whether there are differences across funds in terms of their

reported investment region. It turns out that funds with focus on Global equity markets

or North American equity markets have a higher propensity to end up in quintile 5 (close

to 30% across all fund-month observations in both cases) compared with the dominant

group of European equity funds (16%). Interestingly, funds that focus on Asian equity

markets rarely end up in quintile 5 (2% across all fund-month observations), but often

end up in quintile 1 (40% of observations). This suggests that these funds tend to hedge

rather than take additional risks via their unobserved actions, which may be driven by

higher FX risks that these funds should face.
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5.1.3 Investor Composition

Who invests in synthetically leveraged funds? I tackle this question using information

from the securities holdings statistics (SHS). For each fund-month, I calculate the share

of fund TNA held by banks, ICPFs, investment funds (IFs), households (HHs), non-

financial companies (NFCs) and all other investors (Others), respectively.

In order to test whether differences in the ownership structure are statistically signif-

icant, Table 4 assesses, separately for each investor group, whether a given group tends

to be overrepresented or underrepresented relative to quintile 3. I also include time and

style FEs and cluster standard errors by fund and by date.

Dep. var.:
Share held by ... Banks ICPFs IFs HHs NFCs Others
Quintile(βHt−1)
1 (Hedging) -0.010 -0.016 0.029 -0.020 0.017* -0.000

(0.011) (0.020) (0.024) (0.032) (0.009) (0.019)
2 0.003 0.005 0.003 -0.055** 0.004 0.038**

(0.007) (0.016) (0.017) (0.025) (0.005) (0.019)
4 -0.021** 0.046** -0.027* 0.067*** -0.004 -0.063***

(0.009) (0.020) (0.014) (0.025) (0.005) (0.018)
5 (Risk-taking) -0.021** 0.061* -0.036* 0.051 0.012 -0.073***

(0.010) (0.032) (0.021) (0.042) (0.020) (0.027)
Constant 0.034*** 0.145*** 0.122*** 0.518*** 0.025*** 0.160***

(0.010) (0.019) (0.017) (0.027) (0.005) (0.018)
Time FEs

√ √ √ √ √ √

Style FEs
√ √ √ √ √ √

Obs. 18,222 18,222 18,222 18,222 18,222 18,222
adj.-R2 0.018 0.042 0.072 0.043 0.000 0.064

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 4: Who invests in synthetically leveraged funds? Regression of the relative share of fund TNA held
by different investor groups on the different βH quintiles. All specifications include time FEs (standard
errors in parentheses, clustered by fund and by date).

The results indicate that the investor composition of risk-taking funds differs from

funds in quintile 3. While both ICPFs and HHs tend to be more invested in funds with high

levels of synthetic leverage, both banks and investment funds tend to be underrepresented.

It is not implausible that these sophisticated investor groups are especially aware of the

differences in R and RH in risk-taking funds and thus actively avoid investing in them.

The finding that risk-taking funds display larger expense ratios (cf. Table 3) indeed
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suggests that these are catered towards (smaller) retail investors. To what extent these

investors are aware of these unobserved fund actions is unclear, in particular whether this

raises consumer-protection issues. I leave this as an interesting avenue for future research.

6 Synthetic Leverage and Fund Performance

Why do funds make use of synthetic leverage? An important incentive is that it might

boost their performance. This section analyses performance differences between funds

with different levels of synthetic leverage.

Note that, a priori, it is unclear whether synthetically leveraged funds should outper-

form other funds. For example, similar to financial leverage, synthetic leverage may be

a means to alter higher-order moments of a fund’s return distribution. At the individual

fund-level, while synthetic leverage should affect the variance of a fund’s return distribu-

tion, it might not have a positive effect on the fund’s average performance. Moreover,

the return gap is a fund-specific performance measure in the sense that it measures how

well a given fund performed relative to its own holdings-based benchmark. While the raw

return gap has indeed been shown to be a valuable predictor of future fund performance

(Kacperczyk et al. (2008)), my methodolgy effectively compares the conditional distribu-

tion of R versus RH , after adjusting for other aspects unrelated to the concept of synthetic

leverage. It is unclear whether risk-taking funds should outperform other funds, since my

methodology treats positive and negative realizations of ∆ symmetrically. Therefore, in

the cross-section I do not expect synthetically leveraged funds to significantly outperform

other funds.

As a first step, Figure 5 shows the TNA-weighted cumulative return gap for the dif-

ferent βH-quintiles over time. Focusing purely on this indicator suggests that risk-taking

funds tend to perform rather well: their cumulative return gap amounts to +8% over the

whole sample, compared with +2.4% for hedging funds and 6.5% for funds in intermediate

quintiles. However, Figure 5 also indicates that the time series for risk-taking funds is
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Figure 5: Cumulative return gap, ∆, over time. In a given month t, I calculate the (TNA-weighted)
average ∆ of funds in the different quintiles in month t− 1.

more noisy than the other quintiles.

In line with this observation, Table 5 shows that the differences in Figure 5 are not

significant and that risk-taking funds actually underperform other funds after adjusting

for standard risk factors. As before, I regress the dependent variables (in this case,

different performance measures) on the βH-quintiles, where quintile 3 serves as the baseline

category. I also include fund-specific control variables (fund TNA, age, and expense ratio)

and time/style fixed effects (standard errors are clustered by fund and date). Following

Huang et al. (2011), I show the results for both CAPM alphas and four-factor alphas

over different forward horizons.28 While risk-taking funds tend to slightly underperform

based on 1-month future performance, this becomes substantially worse at longer horizons.

For example, the cumulative 24-month ahead CAPM alpha of risk-taking funds is 1.8

percentage points lower compared to funds in quintile 3.29

28As has become standard practice in the literature (e.g., Evans and Fahlenbrach (2012)), these alphas
are calculated by estimating the corresponding factor regressions over the previous 36 months and then
using the factor loadings and the actual realizations to calculate the expected risk-adjusted net return.
The 6-/12-/24-month alphas are cumulative sums of the corresponding monthly values.

29I should note that the underperformance of risk-taking funds cannot be fully explained by their higher
expense ratios. In particular, as I show in Table 11 in the Internet Appendix, risk-taking funds continue
to underperform when using gross instead of net alphas.
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Dep. var.: Per- net alphaCAPM (in percent) net alpha4F (in percent)
formance (ahead) (1-month) (6-month) (12-month) (24-month) (1-month) (6-month) (12-month) (24-month)

Quintile(βH)
1 (Hedging) -0.044 -0.276 -0.813** -1.885** -0.023 -0.165 -0.229 -0.361

(0.049) (0.205) (0.383) (0.761) (0.043) (0.192) (0.350) (0.622)
2 0.027 0.173 -0.004 -0.466 0.019 0.082 0.130 0.239

(0.048) (0.175) (0.324) (0.545) (0.040) (0.144) (0.275) (0.492)
4 -0.040 -0.155 -0.437 -0.387 -0.064* -0.274** -0.411* -0.211

(0.037) (0.156) (0.265) (0.525) (0.033) (0.137) (0.234) (0.411)
5 (Risk-taking) -0.055 -0.170 -0.798** -1.846*** -0.076 -0.264 -0.619** -0.940*

(0.060) (0.205) (0.333) (0.656) (0.057) (0.175) (0.291) (0.519)
log(TNA(t-1)) 0.015 0.076 0.089 0.140 -0.002 -0.007 -0.041 -0.153

(0.011) (0.046) (0.086) (0.170) (0.010) (0.041) (0.078) (0.151)
log(Age) 0.010 -0.056 -0.094 -0.231 -0.023 -0.202 -0.401 -0.848

(0.043) (0.162) (0.298) (0.595) (0.039) (0.138) (0.259) (0.522)
ExpRatio -0.005 -0.127 -0.470 -0.825 -0.068** -0.434*** -0.920*** -2.120***

(0.040) (0.177) (0.312) (0.589) (0.027) (0.122) (0.237) (0.475)
Constant -0.379 -1.634 -1.642 -2.485 0.098 0.668 1.848 5.253**

(0.260) (0.987) (1.666) (2.949) (0.236) (0.789) (1.402) (2.562)
Time FEs

√ √ √ √ √ √ √ √

Style FEs
√ √ √ √ √ √ √ √

Obs. 20,500 18,896 17,068 13,689 20,500 18,896 17,068 13,689
adj.-R2 0.116 0.106 0.113 0.131 0.144 0.132 0.152 0.181

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 5: Performance analysis. Regression of different measures of future fund net performance on the
βH quintiles. All specifications include time and style FEs (standard errors in parentheses, clustered by
fund and by date). Fund controls included lagged TNA, Age, and the expense ratio.

These results indicate that synthetically leveraged funds significantly underperform

other funds. Of course, there may be other incentives for funds to use synthetic leverage.

In this regard, Table 3 showed that risk-taking funds display significantly larger expense

ratios than other funds. While these higher costs could potentially be justified by their

more sophisticated trading strategies, the results in Table 5 raise doubts about the overall

attractiveness for fund investors of paying such higher fees. In fact, even after controlling

for a fund’s expense ratio, the risk-adjusted performance is substantially worse.

Overall, these findings are in line with those of Huang et al. (2011), who showed that

risk-shifting funds (who increased the riskiness of their asset portfolios over the prior

36 months) also showed substantial underperformance compared with other funds and

significantly larger expense ratios. Similarly, Choi and Kronlund (2018) found that the

larger raw returns of bond funds that reach-for-yield can be fully explained by common

risk factors and that these funds actually show underperformance after adjusting for risk.
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7 Synthetic Leverage and Fund Fragility

An important question is whether synthetic leverage increases fund fragility and induces

more procyclical behavior of investment funds (e.g., ECB (2014); IMF (2018)). One

example of such procyclical behavior would be forced asset sales due to fund investors

responding more strongly to past fund performance. To date, little work has been devoted

to tackling such questions in the context of synthetic leverage. Focusing on a broader

definition of leverage, Molestina Vivar et al. (2020) find that leveraged corporate bond

funds tend to display a stronger flow-performance sensitivity and larger flow externalities

than non-leveraged funds.

7.1 Flow-Performance Relationship

To motivate the following analysis, I start out with an illustration based on the COVID-

19-induced market stress period in March 2020. Specifically, I investigate fund flows and

returns as a function of synthetic leverage over this period. I classify funds based on their

pre-crisis βH-quintiles in December 2019 and then calculate the aggregate cumulative flows

and returns of the different quintiles for the period December 2019 up until May 2020.

Note that I drop ETFs from the following analyses, since ETFs do not allow investors to

redeem their fund shares like open-end funds and thus differ in terms of their externality

potential (e.g., Goldstein et al. (2017)).

The results are shown in Figure 6, where the (TNA-weighted) cumulative returns

for the different quintiles are indexed relative to the end of January 2020. The first

major equity price drop occurred on February 24th and there was a marked stabilization

following the ECB’s announcement of its Pandemic Emergency Purchase Programme on

March 18th. If anything, in terms of their raw returns, risk-taking funds tended to perform

slightly better compared to other funds.30 At the same time, however, risk-taking funds

30This finding is opposite to Kaniel and Wang (2020), who find that hedging funds tended to perform
better. I confirm that risk-taking funds also tend to perform better in my sample after adjusting for
standard risk-factors.
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Figure 6: Cumulative raw returns (top) and cumulative flows (bottom left: in Euro billions; bottom
right: as a percentage of pre-crisis TNA) around the COVID-19-induced stress episode in March 2020.
Note: ETFs are excluded from this analysis.



showed substantial outflows on the order of 1 billion Euros in March, whereas hedging

funds showed inflows of around 0.5 billion Euros. At the same time, however, funds

in quintile 3 also showed outflows of roughly the same magnitude as risk-taking funds.

Overall, it is therefore not clear whether investors in risk-taking funds indeed responded

more strongly to negative fund returns during this episode.

Moving beyond this COVID19-subsample, I wish to assess whether there are sys-

tematic differences in the flow-performance relationship across the different quintiles. I

investigate the following regression:

Flowst,f =γ × Perft−1,f +
∑
j 6=3

γj × Perft−1,f × I(Quintile(βHt,f ) = j)

+
∑
j 6=3

cj × I(Quintile(βHt,f ) = j) + b×Xt,f + εt,f ,

(9)

where the parameter γ measures how strongly investors in funds from quintile 3 respond

to lagged fund performance (Perf). The key question is whether γ is significantly larger for

risk-taking funds, for which the sensitivity parameter is γ + γ5. My estimation approach

closely follows that of Goldstein et al. (2017), and the set of controls (X) includes lagged

flows, age, lagged TNA, a load fee indicator, and the expense ratio. I also include lagged

financial leverage, a fund’s rolling standard deviation of realized returns over the prior 36

months, and time and style FEs. Standard errors are clustered by date and by fund.

Regarding fund performance measures, I again show the results for both CAPM and

four-factor alphas, which are defined here as the intercept of the corresponding factor

regression estimated over the prior 36 months. For both performance measures, I show

results using all observations, and separate results based on (a) negative lagged fund

performances only and (b) for high VIX periods, where the VIX is above its full sample

median value.

Table 6 shows the results: funds with higher values of synthetic leverage tend to show

a weaker flow-performance sensitivity compared to funds in quintile 3. However, while

the interaction terms are generally negative, the differences are not statistically significant
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Dep. var.: Alpha CAPM (36-month, in percent) Alpha 4F (36-month, in percent)
Flows(t) All < 0 High VIX All < 0 High VIX
Perf(t-1) 1.260*** 0.888** 1.245*** 1.599*** 1.211*** 1.314***

(0.353) (0.403) (0.418) (0.320) (0.394) (0.404)
Quintile(βH)
1 (Hedging) 0.000 0.003 -0.000 -0.001 0.002 -0.001

(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)
2 -0.000 0.000 -0.000 -0.001 -0.001 -0.001

(0.001) (0.001) (0.002) (0.001) (0.002) (0.002)
4 -0.002* -0.001 -0.003** -0.003** -0.003 -0.004**

(0.001) (0.002) (0.001) (0.001) (0.002) (0.002)
5 (Risk-taking) 0.001 0.004* 0.001 0.001 0.002 0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Interactions
1 × Perf(t-1) 0.266 0.990* 0.144 -0.229 0.565 -0.232

(0.433) (0.547) (0.531) (0.389) (0.503) (0.496)
2 × Perf(t-1) 0.046 0.175 0.074 -0.202 -0.164 -0.119

(0.365) (0.500) (0.475) (0.391) (0.491) (0.536)
4 × Perf(t-1) -0.405 -0.129 -0.355 -0.854** -0.814 -0.857**

(0.350) (0.479) (0.432) (0.361) (0.493) (0.415)
5 × Perf(t-1) -0.259 0.276 -0.186 -0.216 -0.258 0.089

(0.382) (0.530) (0.453) (0.536) (0.520) (0.538)
log(Age(t)) -0.005*** -0.004*** -0.005*** -0.005*** -0.004*** -0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Expense Ratio -0.000 0.000 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Flows(t-1) 0.118*** 0.119*** 0.110*** 0.118*** 0.117*** 0.111***

(0.022) (0.028) (0.026) (0.023) (0.027) (0.027)
Leverage(t-1) 0.149* 0.163* 0.189* 0.153* 0.147* 0.189*

(0.081) (0.084) (0.101) (0.080) (0.085) (0.101)
I(Load) -0.001 -0.002* -0.001 -0.001 -0.002* -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Sd(Rt−36:t) -0.033 -0.085 0.004 -0.093 -0.154** -0.073

(0.068) (0.068) (0.083) (0.065) (0.065) (0.076)
log(TNA(t-1)) 0.002*** 0.001*** 0.002*** 0.002*** 0.002*** 0.002***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant -0.164** -0.176** -0.208** -0.170** -0.161* -0.211**

(0.081) (0.085) (0.101) (0.081) (0.086) (0.101)
Time FEs

√ √ √ √ √ √

Style FEs
√ √ √ √ √ √

Obs. 17,345 13,037 8,577 17,345 13,950 8,577
adj.-R2 0.054 0.046 0.053 0.055 0.047 0.051

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 6: Flow-performance relationship and synthetic leverage. All specifications include time and style
fixed effects. Standard errors (in parentheses) clustered by fund and by date. The different alphas are
the intercepts of the corresponding factor model, estimated over the previous 36 months. I show results
separately for all observations, for negative performance, and for high values of the VIX (months when
the VIX is in the top quintile over the full sample). Note: ETFs are excluded from this analysis.



for funds in quintile 5. I find that these results are robust to using shorter performance

windows (e.g., 12 or 18 months), to using rank-adjusted performance measures, and to

comparing risk-taking funds with all other funds. Overall, investors in risk-taking funds

do not appear to react more strongly to fund performance. This is broadly in line with

the results in Figure 6, where funds in quintile 3 showed similar returns/flows during the

COVID19-episode in March 2020.

7.2 Flow Externalities

Having established that the flow-performance sensitivity of synthetically leveraged funds

does not differ systematically from other funds, it could still be that large outflows of such

funds may be particularly damaging in terms of (future) fund performance. For example,

this could be the case if these funds were mainly trading relatively illiquid assets to satisfy

investor redemptions. To tackle this question, I follow Chen et al. (2010) and estimate

the following relationship:

Perft,f =θ ×Outflowt−1,f +
∑
j 6=3

θj ×Outflowt−1,f × I(Quintile(βHt,f ) = j)

+
∑
j 6=3

cj × I(Quintile(βHt,f ) = j) + b×Xt,f + εt,f ,

(10)

where Outflow equals one if a fund’s lagged monthly flows are below -5% and zero other-

wise. The set of controls includes four lags of fund performance, lagged fund TNA, and

the expense ratio. As noted by Chen et al. (2010), because past performance is included

in the regression, a significant θ < 0 would show that large outflows affect a fund’s future

performance beyond what is predicted by past performance. I include date and style FEs

and cluster standard errors by date and by fund. ETFs are excluded from this analysis.
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Dep. var.: Raw Return (monthly) Alpha CAPM (monthly) Alpha 4F (monthly)
Perf(t) All Low VIX High VIX All Low VIX High VIX All Low VIX High VIX
Outflow(t-1) 0.167 0.287 0.018 0.173 0.247* 0.101 0.152 0.256** 0.035

(0.138) (0.174) (0.289) (0.115) (0.131) (0.183) (0.110) (0.130) (0.172)
Quintile(βH)
1 (Hedging) -0.056 0.022 -0.120* -0.020 0.083 -0.109* 0.019 0.080* -0.027

(0.044) (0.061) (0.068) (0.039) (0.052) (0.059) (0.039) (0.048) (0.065)
2 -0.031 0.036 -0.097 0.003 0.065 -0.057 0.019 0.022 0.017

(0.045) (0.057) (0.069) (0.039) (0.050) (0.064) (0.039) (0.050) (0.060)
4 -0.040 0.018 -0.096* -0.050 -0.019 -0.088* -0.046 -0.030 -0.063

(0.037) (0.050) (0.057) (0.032) (0.044) (0.052) (0.030) (0.040) (0.047)
5 (Risk-taking) 0.069* 0.104** 0.015 -0.018 -0.074* 0.028 -0.039 -0.102** 0.034

(0.038) (0.047) (0.062) (0.034) (0.042) (0.052) (0.033) (0.041) (0.049)
Interactions
1 × Outflow(t-1) -0.531** -0.650*** -0.316 -0.453* -0.544** -0.325 -0.424** -0.531** -0.310

(0.261) (0.235) (0.459) (0.231) (0.233) (0.351) (0.202) (0.244) (0.304)
2 × Outflow(t-1) -0.177 -0.060 -0.222 -0.286 -0.332 -0.293 -0.178 -0.414 0.045

(0.224) (0.249) (0.385) (0.212) (0.268) (0.305) (0.198) (0.294) (0.281)
4 × Outflow(t-1) -0.389* -0.866*** 0.158 -0.286* -0.464** -0.064 -0.238 -0.517*** 0.059

(0.228) (0.273) (0.342) (0.168) (0.183) (0.292) (0.153) (0.182) (0.252)
5 × Outflow(t-1) -0.631*** -0.385 -0.707* -0.591*** -0.303 -0.799*** -0.425** -0.199 -0.592**

(0.228) (0.258) (0.378) (0.198) (0.193) (0.305) (0.193) (0.201) (0.286)
Perf(t-1) -0.033*** 0.001 -0.056*** -0.007 0.008 -0.017 -0.046*** 0.015 -0.095***

(0.009) (0.011) (0.014) (0.011) (0.013) (0.015) (0.011) (0.012) (0.015)
Perf(t-2) 0.001 -0.042*** 0.022 0.050*** -0.053*** 0.126*** 0.011 -0.045*** 0.052***

(0.009) (0.012) (0.015) (0.011) (0.014) (0.015) (0.009) (0.013) (0.011)
Perf(t-3) 0.005 0.044*** -0.049*** 0.038*** 0.019 0.046*** 0.006 0.024** -0.017

(0.009) (0.011) (0.015) (0.009) (0.012) (0.014) (0.010) (0.011) (0.015)
Perf(t-4) -0.002 -0.019* -0.001 -0.002 -0.016 0.005 -0.024*** -0.027** -0.022*

(0.008) (0.010) (0.014) (0.008) (0.012) (0.013) (0.009) (0.012) (0.013)
log(TNA(t-1)) 0.045*** 0.058*** 0.035** 0.033*** 0.027*** 0.038*** 0.004 -0.001 0.011

(0.008) (0.011) (0.014) (0.008) (0.009) (0.012) (0.007) (0.008) (0.010)
ExpRatio 0.021 0.057 -0.008 0.009 0.034 -0.017 -0.051* -0.002 -0.102***

(0.029) (0.040) (0.043) (0.029) (0.039) (0.035) (0.027) (0.036) (0.036)
Constant -0.202 0.620*** -1.134*** -0.713*** -0.654*** -0.757*** -0.140 -0.116 -0.211

(0.165) (0.211) (0.278) (0.165) (0.191) (0.237) (0.139) (0.165) (0.192)
Time FEs

√ √ √ √ √ √ √ √ √

Style FEs
√ √ √ √ √ √ √ √ √

Obs. 16,566 8,479 8,087 16,566 8,479 8,087 16,566 8,479 8,087
adj.-R2 0.838 0.591 0.874 0.148 0.182 0.141 0.173 0.189 0.174

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 7: Externality regressions as in Chen et al. (2010). All specifications include time and style fixed effects. Standard errors (in parentheses)
clustered by fund and by date. I use monthly fund performance measures as described in Evans and Fahlenbrach (2012). I show results separately for all
observations, and for periods with low and high VIX (months when the VIX is above its full sample median value), respectively. Note: ETFs are excluded
from this analysis.



Similar to Molestina Vivar et al. (2020), Table 7 suggests that highly synthetically

leveraged funds display larger flow externalities: while θ is hardly negatively significant

for funds in quintile 3, the interaction term for risk-taking funds is negatively significant

in most specifications. Interestingly, this appears to be driven by periods with above-

median VIX levels, since the interaction term is insignificant (albeit also negative) in the

low VIX specifications. Hence, risk-taking funds display larger flow externalities, partic-

uarly during volatile market periods. Clearly these periods are likely to correspond with

potentially large margin calls. As a robustness check, Table 12 in the Internet Appendix

shows an enhanced specification with different Outflow indicators. The larger externalities

of risk-taking funds are present only during large Outflows, not during weak/moderate

ones.

To get a better understanding of these results, Table 8 follows the approach of Coval

and Stafford (2007) and illustrates how funds in the different βH-quintiles deal with (large)

outflows. I show the average portfolio adjustments between month t− 1 and month t as

a function of the observed outflows in month t− 1. Here I define weak outflows as fund-

month observations with lagged outflows (i.e., Flowst−1,f < 0) of less than 1%. Moderate

outflows lie between 1% and 5% and large outflows are above 5% as in Table 7. The

first column of Table 8 shows that the average flows are comparable across the different

quintiles for the three scenarios (around -0.4%, -2%, and -10%, respectively). I also show

the average cash holdings in t− 1 and in t (for the sake of comparability, both relative to

the lagged fund TNA), and the number of portfolio holdings that were newly initiated,

expanded, kept constant, reduced, and expanded in month t, relative to the number of

holdings in t− 1.
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All months
Flows(t) Cash(t-1) Cash(t) Share of positions t− 1→ t (in %)

Outflows Quintile(βH) (in %) TNA(t-1) TNA(t-1) New Expanded Constant Reduced Eliminated
Weak 1 (Hedging) -0.40 3.51 3.56 6.45 13.99 61.55 24.46 6.40

2 -0.39 3.09 3.09 5.49 14.60 61.59 23.81 5.18
3 -0.41 3.50 3.47 4.86 13.97 63.90 22.14 4.71
4 -0.41 3.47 3.56 5.82 13.21 66.03 20.77 5.93
5 (Risk-taking) -0.38 4.78 4.82 5.36 11.46 68.55 19.99 4.94

Moderate 1 (Hedging) -2.01 2.70 2.89 6.66 14.00 58.44 27.56 6.33
2 -2.05 2.55 2.95 5.71 14.24 56.99 28.77 5.51
3 -2.08 2.92 3.15 5.72 13.60 59.63 26.76 5.82
4 -2.02 2.91 3.17 5.81 12.95 61.21 25.84 5.69
5 (Risk-taking) -1.95 3.61 3.77 5.31 11.32 66.48 22.20 5.31

Large 1 (Hedging) -9.85 4.87 5.78 8.39 14.66 53.37 31.97 9.30
2 -9.86 2.92 2.58 5.84 16.47 45.71 37.82 6.28
3 -9.62 2.60 2.49 6.10 19.40 47.32 33.28 6.28
4 -9.76 2.91 3.70 6.80 20.26 49.24 30.51 7.75
5 (Risk-taking) -9.62 4.72 4.03 7.92 22.05 52.08 25.87 7.36

Table 8: Average asset-level portfolio adjustments as a function of funds’ net flows à la Coval and Stafford (2007). Results are shown separately for
different βH -quintiles. I define weak outflows as fund-month observations with outflows of less than 1%. Moderate outflows are between 1% and 5% and
large outflows are larger than 5%. Note: ETFs are excluded from this analysis.
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41
Low VIX

Flows(t-1) Cash(t-1) Cash(t) Share of positions t− 1→ t (in %)

Outflows Quintile(βH) (in %) TNA(t-1) TNA(t-1) New Expanded Constant Reduced Eliminated
Weak 1 (Hedging) -0.42 3.63 3.56 6.61 13.25 63.15 23.61 6.40

2 -0.39 2.95 2.97 5.66 14.06 62.89 23.05 5.14
3 -0.41 3.14 3.23 4.72 13.65 64.04 22.30 4.41
4 -0.40 3.27 3.37 5.64 12.87 67.36 19.76 5.80
5 (Risk-taking) -0.38 4.78 4.82 5.05 11.02 70.01 18.97 4.46

Moderate 1 (Hedging) -1.99 2.58 2.56 6.28 13.97 59.18 26.86 5.94
2 -2.08 2.41 2.81 5.76 14.65 57.89 27.45 5.19
3 -2.05 2.67 3.00 6.91 13.07 59.20 27.73 6.59
4 -1.92 2.87 3.19 5.22 12.33 64.10 23.57 5.26
5 (Risk-taking) -1.85 3.46 3.67 5.58 10.10 68.73 21.17 5.47

Large 1 (Hedging) -9.24 4.24 6.45 9.65 16.59 55.76 27.65 8.47
2 -9.08 2.25 2.11 3.55 15.00 49.91 35.09 3.64
3 -9.56 2.30 1.83 6.91 17.28 48.34 34.38 7.10
4 -9.34 2.84 3.56 7.90 19.11 50.10 30.79 8.35
5 (Risk-taking) -9.69 3.56 3.60 7.24 18.26 59.95 21.79 6.40

High VIX
Flows(t-1) Cash(t-1) Cash(t) Share of positions t− 1→ t (in %)

Outflows Quintile(βH) (in %) TNA(t-1) TNA(t-1) New Expanded Constant Reduced Eliminated
Weak 1 (Hedging) -0.39 3.40 3.56 6.30 14.71 60.02 25.27 6.40

2 -0.39 3.23 3.23 5.31 15.17 60.24 24.59 5.22
3 -0.41 3.91 3.74 5.02 14.33 63.73 21.94 5.05
4 -0.41 3.68 3.77 6.01 13.57 64.56 21.86 6.09
5 (Risk-taking) -0.38 4.78 4.82 5.71 11.95 66.91 21.14 5.47

Moderate 1 (Hedging) -2.03 2.82 3.23 7.06 14.04 57.67 28.29 6.73
2 -2.02 2.70 3.10 5.67 13.82 56.06 30.12 5.84
3 -2.12 3.19 3.31 4.46 14.17 60.09 25.74 5.00
4 -2.12 2.95 3.16 6.38 13.55 58.40 28.05 6.10
5 (Risk-taking) -2.06 3.77 3.88 5.03 12.62 64.08 23.29 5.13

Large 1 (Hedging) -10.29 5.32 5.29 7.48 13.27 51.66 35.07 9.90
2 -10.74 3.72 3.14 8.41 18.12 40.99 40.89 9.26
3 -9.68 2.91 3.18 5.22 21.72 46.20 32.08 5.39
4 -10.26 3.00 3.86 5.56 21.56 48.26 30.18 7.08
5 (Risk-taking) -9.56 5.57 4.35 8.44 24.94 46.08 28.98 8.09

Table 9: Low versus high VIX subsample (months with below/above median VIX). Average asset-level portfolio adjustments as a function of funds’
net flows à la Coval and Stafford (2007). Results are shown separately for different βH -quintiles. I define weak outflows as fund-month observations with
outflows of less than 1%. Moderate outflows are between 1% and 5% and large outflows are larger than 5%. Note: ETFs are excluded from this analysis.



The results suggest that risk-taking funds tend to keep relatively more positions un-

touched across all three outflow scenarios (69%, 66%, and 52% of the positions) relative

to funds in quintile 3 (64%, 60%, and 47%). On the other hand, faced with large out-

flows risk-taking funds eliminate a larger number of positions relative to funds in quintile

3 (7.4% versus 6.3%). Given that risk-taking funds tend to show larger SMB loadings

(cf. Table 3), their trading activity is likely to occur in less liquid stocks. Remarkably,

risk-taking funds do not appear to make use of their cash buffers in the case of weak and

moderate outflows (where the average cash ratio actually tends to increase), but draw

upon their relatively large cash holdings (cf. Table 3) particularly during times of large

investor redemptions.

Further evidence along these lines is provided in Table 9, where I present separate

results for high-/low-VIX subsamples (below/above median, as in Table 7). Comparing

the case of large outflows between these two market states shows that risk-taking funds

generally display substantially larger cash ratios during high VIX periods, where large

margin calls are also more likely. While funds across all quintiles generally tend to trade

more actively during high VIX periods compared to low VIX periods, risk-taking funds

tend to reduce and eliminate a larger number of positions compared with funds in quintile

3. In line with the results in Table 7, this is not the case during low VIX periods. Table

13 in Internet Appendix C shows that these results also hold in a regression framework.

8 Conclusions

In this paper, I propose a novel measure of synthetic leverage that does not require

information on funds’ derivatives trading/securities lending activities. In my application

for German equity funds during the period September 2009 to May 2020, I show that

synthetic leverage varies strongly both in the cross-section and over time. In particular,

I find that risk-taking via synthetic leverage increases from 2015 onwards, suggesting

an intricate relationship with the macro-financial environment. Returns of synthetically
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leveraged funds tend to be negative on a risk-adjusted basis. Lastly, I show that these

funds tend to display larger flow externalities. Taken together, these results suggest that

synthetic leverage should be closely monitored in the future.

From a methodological perspective, it is important to note that my proposed synthetic

leverage measure treats positive and negative fund returns symmetrically. Future work

could contrast this approach with asymmetric measures that specifically focus on the lower

tail of the fund’s return distribution (e.g., estimating βH based on quantile regressions).

Moreover, while this paper focused on the subset of equity funds, my methodology can be

applied to other fund types as well, most importantly (corporate) bond funds. It would

be interesting to see whether my main findings carry over to these other fund types. In

particular, it would be interesting to investigate whether there is a causal relationship

between fund risk-taking via synthetic leverage and the stance of monetary policy (e.g.

Choi and Kronlund (2018)). Lastly, based on more granular derivatives/SFT data one

could explore how synthetically leveraged funds position themselves in these markets and,

crucially, who their counterparties are. Such analyses are important to further assess the

systemic implications of synthetic leverage.
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A Regulatory Background: Global Derivatives Ex-

posures in the EU

The UCITS Directive 2010/43/EU and the Guidelines on Risk Measurement and the

Calculation of Global Exposure and Counterparty Risk (CESR (2010)) regulate the use of

leverage of UCITS funds domiciled in the EU.31 The UCITS Directive specifies that funds

may borrow up to 10% of its TNA for purposes other than investment. Moreover, the

Directive contains specific guidelines on the calculation of global exposures from the use

of derivatives, which must be calculated at least on a daily basis and must be complied

with on an ongoing basis. With regard to the calculation of global exposures, UCITS

management companies can choose between two broad approaches:

• The commitment approach is applicable to funds with basic investment strate-

gies that take directional risk by means of derivatives instruments. Effectively, the

approach converts derivatives exposures into equivalent positions in the underly-

ing instruments (market value). In addition to derivatives positions, this approach

takes into account techniques and non-derivative instruments that may create lever-

age (such as repurchase agreements or securities lending transtions32). Moreover,

the commitment approach allows fund managers to reduce their global exposure via

netting/hedging arrangements, which must satisfy a number of strict criteria. The

UCITS Directive specifies that a fund’s global exposure should not exceed its TNA.

• For more sophisticated investment strategies that take non-directional risk (e.g.,

volatility risk, gamma risk, or basis risk), fund managers can use one of two Value-

at-Risk (VaR) approaches:

31Alternative Investment Funds in the EU are regulated under the Alternative Investment Fund Man-
agers Directive (AIFMD). Under the AIFMD, asset managers have to report different leverage measures
compared to the UCITS Directive. Also, whereas the UCITS Directive limits the use of leverage, the
AIFMD does not impose hard limits.

32The CESR (2010) explains that a repo transaction will almost always give rise to leverage for the
selling counterparty, since the cash collateral received must be reinvested at a yield greater than the
financing costs incurred in order to make a return. Similarly, for securities lending transactions the
securities lender may reinvest the cash collateral received, which also creates leverage, i.e., global exposure.
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1. The relative VaR compares a fund’s return VaR with the VaR of the fund’s

unleveraged benchmark portfolio. The relative VaR should not exceed twice

the benchmark VaR, which means that the fund is allowed to double the risk

of an extreme loss. Specifically, the benchmark portfolio ...

- should be unleveraged and should not include any derivatives instruments

(except for UCITS engaging in long/short strategies).

- should be consistent with the investment objectives, policies and limits of

the UCITS portfolio. In other words, the reference portfolio should have a

risk profile that is very close, if not identical, to the UCITS’ unleveraged

securities portfolio.

- used by the UCITS should not change frequently, otherwise the relative

VaR should not be used.

2. The absolute VaR approach requires that a fund’s VaR may not exceed 20%

of its TNA. This approach would be particularly relevant for UCITS that

invest in several asset classes (e.g., mixed funds) without a specific benchmark

target. A number of calculation standards are specified for the absolute VaR.

For example, fund managers should use ...

- a one-tailed confidence interval of 99%,

- a holding period equivalent to 1 month (20 business days),

- input data of at least one year (except for volatile market periods),

- at least daily VaR calculations.

Note that neither VaR approach explicitly incorporates the use of derivatives and/or

securities financing transactions. In fact, as discussed by ?, the absolute VaR ap-

proach generally allows a greater usage of derivatives than the two alternative ap-

proaches. Whereas both the committment approach and the relative VaR approach

aim to curtail the gearing effect of leverage (whichever its source), the absolute VaR

approach does not limit leverage per se, but rather the maximum potential return
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loss under normal market conditions.

Relation to ∆-based Framework. I should note that the relative VaR approach is

related to my methodology in the following sense: here, I use RH as the unleveraged

benchmark portfolio return, since it satisfies most of the criteria laid out above. For the

relative VaR,

κrel =
VaR(R)

VaR(RH)
< 2 (11)

would then be an alternative measure of synthetic leverage.

Under the absolute VaR, a synthetic leverage measure would be

κabs = VaR(R)− 0.2. (12)

In principle, I could estimate these two VaR measures. One important issue, however, is

that the UCITS Directive requires, among other things, the use of daily information. Here,

I only have monthly information on the two fund return series (including the reported

asset portfolios).
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B Shapley Value Regressions

The concept of Shapley values comes from coalitional game theory (Shapley (1954); Joseph

(2019)). One can think of a regression as the game, where each explanatory variable is

a player and the quality of the fit is the payoff. By cooperating, players can receive a

certain payoff. The relative importance of a player, its Shapley value, thus depends on its

contribution to the total payoff. Intuitively, for each of the K factors, we check how much

R2 changes on average when adding the factor to a given model, across all possible model

specifications. More formally, let X(k, q) be the q-membered subset of X in which factor k

appears, and R2(k, q) be the corresponding R2 from the regression y = b0 +bq ·X(k, q)+ε.

Also, let X(l, r) be the r-membered subset of X in which factor k does not appear, with

corresponding R2(l, r). The relative importance (Shapley value, Sk) of factor k is equal

to

Sk =
1

K

K∑
q=1

[
C∑
c=1

(R2(k, q)−R2(l, q − 1))c

]
/C, (13)

where C is the number of evaluations that were carried out.
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Figure 7: Illustration of the cross-sectional distribution of the relative contribution for the three compo-
nents of ∆ (as measured by the Shapley value). For each fund f with at least 36 monthly observations, I
estimate the corresponding Shapley values over the full sample. I show the results for funds from different
βH quintiles (using the fund-specific full sample average value of βH).



C Robustness Analyses

To move beyond the univariate approach in Table 10, I also estimate a multinominal

logistic regression with the basic structure

Prob(Quintile(βHt,f ) = j) =
exp(β′j × xt,j)∑J
k exp(β′k × xt,k)

for j = 1, . . . , 5. (14)

As before, I define quintile 3 as the baseline category, such that all parameters are esti-

mated relative to this category.33 Parameters are estimated using Maximum Likelihood

(standard errors clustered at the fund level).

The results are shown in Table 10, where I drop some of the characteristics from Table

3 due to potential collinearity issues. The left-hand specification shows the results for the

full sample, excluding the derivatives and securities lending indicators. The right-hand

specification shows the results for the reduced sample period including these indicators.

While the results are broadly consistent with those from the univariate analysis in Table

3, some results turn out to be insignificant after adjusting for a number of characteristics

at the same time. For example, in the multivariate comparison, both the turnover ratio

and the expense ratio of risk-taking funds turn out to be indistinguishable from those

of funds in quintile 3. With regard to the validation, however, even after controlling for

other fund characteristics, risk-taking funds are significantly more likely to make use of

derivatives, while there is no significant effect of securities lending.

33A more parsimonious approach would be to use the ordered logistic regression. The key difference
is that the ordered logistic regression restricts the marginal effects to be the same for each outcome. In
contrast, the multinomial logistic regression permits full parameters flexibility. Given that my sample is
reasonably large, the benefits of the multinomial logit make it the preferred specification.
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Dep. var.: Per- gross alphaCAPM (in percent) gross alpha4F (in percent)
formance (ahead) (1-month) (6-month) (12-month) (24-month) (1-month) (6-month) (12-month) (24-month)

Quintile(βH)
1 (Hedging) -0.044 -0.277 -0.818** -1.899** -0.023 -0.166 -0.234 -0.375

(0.049) (0.204) (0.383) (0.765) (0.043) (0.192) (0.350) (0.619)
2 0.027 0.174 -0.007 -0.481 0.020 0.084 0.127 0.224

(0.048) (0.176) (0.325) (0.544) (0.040) (0.144) (0.275) (0.488)
4 -0.040 -0.155 -0.435 -0.387 -0.064* -0.274** -0.408* -0.211

(0.037) (0.156) (0.265) (0.527) (0.033) (0.138) (0.234) (0.413)
5 (Risk-taking) -0.055 -0.167 -0.789** -1.833*** -0.076 -0.261 -0.610** -0.927*

(0.060) (0.205) (0.333) (0.656) (0.057) (0.175) (0.291) (0.518)
log(TNA(t-1)) 0.015 0.073 0.081 0.119 -0.002 -0.010 -0.049 -0.174

(0.011) (0.046) (0.086) (0.169) (0.010) (0.041) (0.078) (0.151)
log(Age) 0.010 -0.048 -0.074 -0.158 -0.023 -0.194 -0.381 -0.775

(0.043) (0.162) (0.298) (0.591) (0.039) (0.137) (0.259) (0.517)
ExpRatio 0.078* 0.358** 0.476 0.983* 0.015 0.051 0.026 -0.312

(0.040) (0.177) (0.312) (0.588) (0.027) (0.122) (0.235) (0.469)
Constant -0.377 -1.585 -1.473 -2.022 0.100 0.717 2.018 5.717**

(0.260) (0.990) (1.669) (2.938) (0.237) (0.789) (1.398) (2.557)
Time FEs

√ √ √ √ √ √ √ √

Style FEs
√ √ √ √ √ √ √ √

Obs. 20,500 18,896 17,068 13,689 20,500 18,896 17,068 13,689
adj.-R2 0.116 0.102 0.101 0.112 0.142 0.120 0.127 0.127

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 11: Performance analysis. Regression of different measures of future fund gross performance on
the βH quintiles. All specifications include time and style FEs (standard errors in parentheses, clustered
by fund and by date). Fund controls included lagged TNA, Age, and the expense ratio.
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