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Regulating Financial Networks:
A Flying Blind Problem

ABSTRACT

Lack of detailed information, together with opaque and complex interactions among financial

institutions, besets their regulation. This paper develops a tractable framework to study

the problem faced by a network-conscious regulator when designing interventions in face of

uncertainty about the susceptibility of the economy to contagion. With this framework in

hand, I show how optimal interventions depend on a delicate balance between the network

architecture and the knowledge available to regulators.
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With increasing globalization, financial institutions have become more interconnected

and markets more intertwined. While several post-financial crisis reforms consider various

measures of interconnectedness to promote financial stability, policymakers are confronted

with an inconvenient truth when designing these interventions.1 Because of the lack of

detailed information and the fact that interactions among financial institutions are frequently

complex and opaque, it is hard to determine the susceptibility of the financial system to

contagion. Importantly, this problem becomes particularly acute in times of economic stress,

as spirals of fire sales may become relevant. As Jackson (2019, p. 92) puts it: “Central banks,

and other national and international government branches and agencies, not to mention

financial institutions themselves, are essentially flying jets without instruments. They are

making rapid decisions that steer complex machinery based on limited information.”

How then can policymakers regulate a network of interdependent financial institutions

when they are fundamentally uncertain about its susceptibility to contagion? This paper

develops a tractable conceptual framework to help answering this question. With this

framework in hand, I characterize socially optimal interventions and show how they depend

on a delicate balance between the network architecture and the knowledge available to

policymakers.

Though stylized, the baseline model is motivated by an economy in which profit-maximizing

financial institutions (banks, for short) are interconnected through an exogenous network

of opaque exposures. Exposures are on either the asset side or the liability side and cannot

be mitigated through contractual protections. In times of economic stress, some exposures

(henceforth referred to as contagious exposures) function as propagation mechanisms as

banks become more vulnerable to distress affecting related banks. As a result, cascades of

failures may occur: the failure of a bank could lead to the failure of its neighbors, which,

in turn, could lead to the failure of its neighbors’ neighbors, and so on. Each exposure is

contagious (independently of others) with probability 0 < p < 1. Two frictions (limited

liability and bankruptcy costs) ensure that there is room for regulation. A social planner

seeks to maximize expected total output by imposing preemptive restrictions on banks. To

capture policymakers’ inability to ascertain the susceptibility of the economy to contagion, p

is assumed to be unknown. While the planner is uncertain about p, she can choose to learn

more about its precise value through a costly information technology, thereby improving

network transparency. Hence, her intervention design is preceded by an information choice.

My design problem is choosing optimally how much transparency to attain and how to

1See Bank for International Settlements (2009, 2010, 2011), International Monetary Fund (2010), Financial
Crisis Inquiry Commission (2011), Yellen (2013), and Tarullo (2019) for examples of how regulation was
dramatically reshaped by policymakers’ concerns about the high interconnectedness among market participants
and its potential impact on systemic risk.

3



regulate banks with such information.

To better understand how the network can reshape market equilibrium inefficiencies, I

initially consider the case when p is common knowledge. Working under this assumption, I

characterize banks’ collective investment choice at the market equilibrium and the socially

optimal investment choice. By doing so, I distill the conditions under which introducing

regulation can lead to a Pareto improvement. This analysis uncovers a simple intuition behind

market equilibrium inefficiencies within the model. While banks take into consideration how

other banks’ actions affect their failure probability, banks fail to internalize the consequences

of their actions on the spread of failures due to limited liability. Because banks are not liable

for other banks’ failure, they do not internalize the impact of their actions on the likelihood

that other banks fail due to cascades of failures that originate when themselves initially

fail. Within the model, the existence of bankruptcy costs only increases market equilibrium

inefficiencies as banks do not bear these costs when failing.

I then characterize optimal interventions when p is unknown and show how such interven-

tions need to solve a delicate balance. For a given level of network transparency, optimal

interventions strike the right balance between (1) increasing the expected resilience of the

economy to contagion and (2) increasing the expected social costs associated to forcing banks

to hold more liquid portfolios. Notably, when evaluating this trade-off, the planner uses

expectations to quantitatively assess banks’ failure probabilities, which are joint functions of

her information technology and the network architecture. As a consequence, the planner’s

intervention design problem is intimately linked to her information choice. While improving

network transparency can be costly—as gathering and processing detailed bank information is

costly—not improving transparency can also be costly, as it results in welfare losses associated

with implementing ineffective interventions. Intuitively, ineffective interventions arise from

the fact that the planner sometimes makes mistakes evaluating the above trade-off due to

not knowing the precise value of p. Importantly, different network architectures exhibit

different susceptibilities to contagion, altering the extent to which the planner can dampen

cascades of failures more effectively, which, in turn, affects the social value of learning more

about p. Additionally, the social value of increasing transparency depends on how precise

is the information technology available to the planner. At the fundamental level, optimal

interventions strike just the right balance among the above dimensions.

The aforementioned results inform the ongoing debate regarding the design of macro-

prudential regulations. While post-financial crisis reforms have focused principally on large

financial institutions, my results underscore that the architecture of the financial system,

and not just the size of institutions, matters for policy design. My results also highlight

that an appropriate regulatory framework must be mindful of the uncertainty regarding the
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susceptibility of the economy to contagion and the benefits and costs associated to increasing

network transparency.

Related Literature. My paper is related to different strands of the literature. The first

literature explores how network features of the financial system affect the likelihood of conta-

gion. An incomplete list includes Rochet and Tirole (1996), Allen and Gale (2000), Freixas

et al. (2000), Eisenberg and Noe (2001), Lagunoff and Schreft (2001), Dasgupta (2004), Leitner

(2005), Nier et al. (2007), Allen and Babus (2009), Haldane and May (2011), Allen et al.

(2012), Amini et al. (2013), Cont et al. (2013), Georg (2013), Zawadowski (2013), Cabrales

et al. (2014), Elliott et al. (2014), Glasserman and Young (2015, 2016), Acemoglu et al.

(2015), and Castiglionesi et al. (2019); see Capponi (2016) and Jackson and Pernoud (2020)

for recent surveys on this topic. Unlike these papers, however, my paper explicitly focuses

on socially optimal interventions in the presence of spillovers and uncertainty regarding the

susceptibility of the economy to contagion.

The second literature explores how policy interventions affect the mechanism through which

shocks propagate. An incomplete list includes Beale et al. (2011), Gai et al. (2011), Battiston

et al. (2012), Goyal and Vigier (2014), Aldasoro et al. (2017), Erol and Ordoñez (2017), Gofman

(2017), Galeotti et al. (2018), Jackson and Pernoud (2019), Kanik (2019) and Ramı́rez (2019).

While my paper also focuses on how contagion varies with different interventions, it provides

a tractable framework in which optimal policies can be analytically determined under

uncertainty regarding the susceptibility of the economy to contagion. On the technical level,

the closed-form solutions developed in my paper are completely new to this literature. The

solution and characterizations of the optimal level of network transparency are also new.

My results are also related to the literature that explores transparency in the banking

system. The reason is that, within my model, the planner’s intervention design is preceded by

an information choice because of the uncertainty regarding the susceptibility of the economy

to contagion.2 Within this literature, Alvarez and Barlevy (2015) is related to my work as they

explore how disclosure policies can be used to forestall contagion in a financial network. They

show that when contagion is severe, mandatory disclosure of banks’ balance sheet information

can be welfare-improving. This is because banks do not completely internalize the social value

of the information they reveal about themselves, and, thus, they disclose less than is socially

optimal. In the spirit of Hirshleifer (1971), they also show that forcing banks to disclose

information can be sometimes welfare-reducing as secrecy can support socially beneficial

risk-sharing between banks. Their focus is, however, on characterizing the conditions under

which mandatory disclosure can improve welfare rather than focusing on how much network

2Reviews of the literature on disclosure of (regulatory) information in financial markets can be found
in Goldstein and Sapra (2013), Leitner (2014), and Goldstein and Yang (2017).
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transparency to attain and how to regulate banks with such information. Hence, their model

is silent regarding the regulator’s optimal intervention in face of uncertainty regarding the

susceptibility of the economy to contagion.

The remainder of this paper is organized as follows. Section I presents a simple and

tractable model that helps to illustrate the need of regulation in network economies when

their susceptibility to contagion is known. With these results in hand, section II characterizes

the main design problem of the paper: how to design interventions when policymakers

are uncertain about the economy’s susceptibility to contagion. By discussing comparative

statics of this design problem, section III characterizes how the optimal level of network

transparency varies with the underlying characteristics of the economy. Section IV discusses

some assumptions and relevant extensions of the baseline model. Section V concludes. For

conciseness, proofs of propositions and corollaries are deferred to the appendix.

I. Baseline Model

This section describes a simple model that highlights the trade-offs that arise when

regulating a network of interdependent financial institutions. My focus on this tractable

model is primarily driven by expositional and notational simplicity. At the expense of

additional notation, appendix A shows that the properties derived from this baseline model

continue to hold in a more general setting.

A. The economy

Consider a two-period economy consisting of n risk-neutral banks whose payoffs are linked

through an exogenous network of financial exposures, which I represent via an undirected

graph Gn. Time is indexed by t ∈ {0, 1} and banks are indexed by i ∈ {1, 2, · · · , n}, with n

potentially large.

While banks may differ in their number of exposures, they are ex ante identical in other

respects. There are two types of assets: an illiquid asset and cash. The illiquid asset is

meant to capture a risky investment opportunity that cannot be easily converted into cash,

such as financing an entrepreneur’s project. At t = 0, each bank is endowed with n dollars

and invests a fraction of its endowment in the illiquid asset; the rest of its endowment is

kept in cash. Due to limited liability, banks select their portfolios so as to maximize their

expected payoffs, conditional on such payoffs being positive. At t = 1, economic conditions

deteriorate and payoffs are realized. When economic conditions deteriorate, banks become

more vulnerable to distress affecting related banks, and, thus, cascades of failures might occur
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as a result of contagion.

To focus on the impact of uncertainty on optimal interventions, I deliberately simplify

the contagion process. In particular, the propagation of failures among banks is determined

by the following stochastic process:

• One bank (chosen uniformly at random) is hit by an adverse liquidity shock ε ∼
U [−n, 0].3 Because it is difficult to sell the illiquid asset when economic conditions

deteriorate, such a bank fails if its cash holdings are smaller than ε. While a failed

bank generates zero payoffs, there is a social cost associated to its failure, κ > 0. This

bankruptcy cost aims to capture inefficiencies that arise due to bankruptcy proceedings.

For example, during bankruptcy, banks’ liabilities might be frozen. Consequently,

creditors may not immediately receive payment, interrupting their ability to acquire

inputs for production, thereby potentially leading to resource misallocation within the

economy.

• While an arbitrary bank, say bank i, might not be initially affected by ε, i can still fail

if there is a sequence of contagious exposures between i and the initially affected bank

(assuming such a bank fails). As previously noted, each exposure is contagious with

probability 0 < p < 1. This implies that neighboring banks can fail independently of

their cash holdings. As it becomes clear in section IV, while this particular specification

allows me to obtain closed-form solutions, my results do not hinge on this simplifying

assumption.

The random selection of contagious exposures serves as a metaphor for market participants

and regulators having difficulty assessing how exposures react in times of economic stress.

At a fundamental level, cascades of failures can be broadly interpreted as liquidity-driven

crises in which liquidity shocks affecting certain banks induce liquidity shocks for some of

their neighbors. In times of stress, those neighbors may face a run due to solvency concerns,

which, in turn, potentially causes solvency concerns about some of the neighbors’ neighbors,

possibly generating cascades of runs as in Diamond and Rajan (2011), Caballero and Simsek

(2013), and Stein (2013). Consequently, cascades of failures could also be interpreted as crises

of confidence as in Zhou (2018). Another example of cascades relates to situations in which

liquidity shocks that affect some banks lead to write-downs in the balance sheets of some of

their neighbors. If resulting losses exceed the capital of such neighbors, those neighbors will

fail, which, in turn, may cause other banks to fail as well, as in Elliott et al. (2014).

Let α ≥ 0 and β > 0 denote the expected payoff of cash and the illiquid asset, respectively;

hereinafter, α is normalized to zero for notational simplicity. Let xi and πi denote the fraction

3My results continue to hold if, instead of one, an arbitrary set of banks is initially affected by the adverse
liquidity shock.
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of bank i’s endowment invested in the illiquid asset and bank i’s payoff at t = 1, respectively.

If bank i does not fail at t = 1, then its expected payoff is given by

πei ≡ E (πi|i does not fail) = βnxi. (1)

Information. All features and parameters of the economy are common knowledge,

with the exception of p, whose precise value is unknown. Beyond conceptually introducing

uncertainty regarding the susceptibility of Gn to contagion, allowing p to be unknown (rather

than Gn) is mathematically convenient as it becomes clear in section II.

Notation. Hereinafter I use the following notation. Let G denote the adjacency matrix of

Gn, I denote the n×n identity matrix, 1 denote the n×1 vector of ones, and ei denote a 1×n (se-

lector) vector with a one in element i and zeros elsewhere. Define Gk ≡ Gk−diag
(
Gk
)
, where

Gk denotes the kth power of G and diag
(
Gk
)

denotes a diagonal matrix of Gk. I write x ≡
(x1, · · · , xn)′ to denote the n× 1 vector representing banks’ collective investment choice. For

a given value of p, I write Pp ≡ (Pp (bank 1 fails) ,Pp (bank 2 fails) , · · · ,Pp (bank n fails))′

to denote the n× 1 vector of banks’ failure probabilities.

B. The need for regulation

To better understand the reason the market equilibrium is not efficient and interventions

possibly lead to a Pareto improvement, assume p is common knowledge; this assumption is

relaxed at the end of this section. Working under this assumption, I now characterize banks’

collective investment choice at the market equilibrium and the socially optimal investment

choice.

Market equilibrium. Given how failures propagate throughout the network,

Pp (bank i fails) =

(
1

n

)
nxi +

(
1− 1

n

)
ei

((
n

n− 1

) ∞∑
k=1

pkGkx

)
. (2)

The first term on the right hand side of equation (2) captures the likelihood that bank i fails

as a result of being initially affected by ε; recall that each bank is hit by ε with probability 1
n
.

The second term on the right hand side of equation (2) relates to the case when ε initially

affects a different bank. In particular, this term captures the likelihood that the initially

affected bank fails, and, as a result of contagion, bank i fails. This is because Gk keeps track

of the number of paths of length k between any two banks. Consequently, the second term in

the right hand side of (2) captures the likelihood of contagion as it keeps track of every path

between i and any other bank in the economy. A path of length k from bank j to bank i is a
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sequence of banks (s0, s1, · · · , sk) where s0 = j, sk = i, sl 6= sl+1, and (l, l + 1) ∈ Gn.

Notably, equation (2) can be rewritten in matrix form as

eiP = ei(I + pG + p2G2 + p3G3 + · · · )x = ei (I− pG)−1 x, (3)

where p is assumed to be sufficiently small so that (I− pG)−1 is well defined.4 Therefore,

bank i’s optimal investment choice, x∗i , is chosen so as to maximize its expected payoff,

Ui(x, p), defined as

Ui(x, p) ≡ πei × (1− Pp (bank i fails)) = βnxi
(
1− ei (I− pG)−1 x

)
. (4)

Because bank i’s probability of failure is reshaped by its portfolio decision (see equation (2)),

bank i faces the following trade-off when choosing x∗i : the more liquid its portfolio, the higher

its resilience to idiosyncratic liquidity shocks, but potentially the lower its future payoff.

Importantly, the fact that bank i’s failure probability is reshaped by its portfolio decision

makes banks i’s and j’s actions strategic substitutes if there is a sequence of exposures

between them. An increase in x∗j triggers a downward shift in x∗i . The higher x∗j , the more

likely bank j fails if initially affected by ε, and, thus, the higher the likelihood bank i is

affected by contagion. To counteract this increase, bank i shifts to a more liquid portfolio so

as to decrease its failure probability.

The next proposition characterizes the market equilibrium.

PROPOSITION 1 (Market Equilibrium): Consider the simultaneous move n-bank game with

payoffs described in (4). Given p, banks’ collective choice at the unique Nash-equilibrium,

xe ≡ (x∗1, · · · , x∗n)′, is given by

xe =

I +

(
n−1∑
k=0

pkGk

)−1
−1

1. (5)

That is, banks’ equilibrium behavior is intimately linked to their position in Gn, the

network architecture, and the value of p. Equation (5) underscores that banks’ portfolio

decision not only depends on the decisions their direct neighbors but also depends on the

decisions of their neighbors’ neighbors (and so on and so forth). This is because the adverse

liquidity shock that initially hits the economy can potentially propagate via long sequences

of contagious exposures. As a result, when choosing their portfolio, banks must be mindful

of their exposure to failures of other banks in the economy. Then, the higher the number

4Just take p to be smaller than the norm of the inverse of the largest eigenvalue of G.
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of exposures of bank i, the smaller x∗i , as the more likely bank i is affected by contagion.

Similarly, x∗i is a decreasing function of p. The higher p, the more likely failures propagate

throughout the network. Consequently, banks preemptively hold more cash to decrease their

failure probabilities. The next corollary summarizes the results above.

COROLLARY 1: x∗i is decreasing in both p and the number of exposures of bank i.

Socially optimal investment choice. Now consider the problem faced by a benevolent

and risk-neutral social planner who understands the effect that both the network architecture

and p play in how shocks propagate along the network. Let ∆n ≡ [0, 1]n denote the n-simplex.

For a given value of p, the planner selects x ∈ ∆n so as to maximize welfare, W (x, p), defined

as

W (x, p) ≡
n∑
j=1

Ep (πj|x) =
n∑
j=1

πejPp (j does not fail)− κPp (j fails) . (6)

Equation (6) underscores that the planner also considers the impact of banks’ actions on

other agents in the economy as bankruptcy costs affect her objective function. The next

proposition characterizes the socially optimal investment choice.

PROPOSITION 2 (Optimal interventions when p is known): Given p, the socially optimal

investment choice, xso ≡ (xso1 , · · · , xson )′, is given by5

xso =
1

2

((
1− κ

βn

)
I− pG

)
1. (7)

That is, the socially optimal investment choice depends on the interplay between the

network architecture, captured by matrix G, the value of p, bankruptcy costs, and the

expected payoff of the illiquid asset. For instance, the higher κ
β
, the higher the relative social

cost of bankruptcy. Hence, the smaller xso must be so as to reduce the likelihood of contagion.

Similarly, the higher p, the higher the susceptibility of the economy to contagion. Thus,

banks’ portfolios must be more liquid to forestall contagion: If every bank’s portfolio is more

liquid, the less likely the initially affected bank fails. Following a similar argument, but at

the bank level, the higher the number of exposures of bank i, the more liquid its portfolio

must be. This is because, on average, the number of failures would be higher when bank i

fails. The next corollary summarizes the results above.

COROLLARY 2: xsoi is decreasing in κ
β

, p, and the number of exposures of bank i.

At the fundamental level, xso is deliberately selected so that the benefits of forcing

5It is assumed that model parameters are within a region wherein xso ∈ ∆n.
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a particular bank to hold a more liquid portfolio are equal to the losses associated with

implementing such restrictions. Intuitively, these losses arise because banks are forced to

allocate more funds toward assets that yield lower expected payoffs (as β > α). Benefits

arise because forcing banks to hold more liquid portfolios not only increases banks’ resilience

to idiosyncratic shocks, but also decreases the likelihood that their (direct and indirect)

neighbors fail, thereby decreasing the expected number of failures. In sum, the network-based

policy characterized by equation (7) ensures that banks fully internalize the impact of their

portfolio choice on the likelihood that other banks fail as well as the social costs associated

with bankruptcies.

The inefficiency of the market equilibrium. Due to limited liability and bankruptcy

costs, there is a wedge between the market equilibrium and the socially optimal investment

choice. The next corollary characterizes such a wedge.

COROLLARY 3: Given p, the wedge between the market equilibrium and the socially optimal

investment choice is given by

xe − xso =
1

2

((
κ

βn
I + pG

)
−
(
I− p

2
G
)−1
)
1. (8)

Intuitively, when choosing its portfolio, bank i takes into account the likelihood that

failures affecting other banks propagate along Gn. However, bank i does not internalize (1)

the impact of its investment choice on the likelihood that other banks fail as a result of

cascades of failures that originate from i failing, and (2) the existence of bankruptcy costs.

Consequently, the higher p, the larger the market equilibrium inefficiency. Because banks fail

to internalize the externalities of their investment choices, the more likely failures propagate

along the network, the higher the inefficiency. Similarly, the higher bankruptcy costs, the

higher such an inefficiency, as banks do not bear these costs when failing.

To better understand the relevance of bankruptcy costs within the baseline model, it is

worth analyzing the following limit

lim
κ→0

(xe − xso) =
1

2

(
pG−

(
I− p

2
G
)−1
)

1. (9)

That is, even without bankruptcy costs, the market equilibrium is not socially optimal

(assuming Gn is nonempty). Because of limited liability, when bank i fails, i is not liable for

the failures of other banks that occur as a consequence of i’s failure. Hence, the existence of

the network itself (joint with limited liability) is able to generate a positive wedge between

the market equilibrium and the socially optimal investment choice. This, in turn, highlights

11



the importance of limited liability within the baseline model.6

II. The Flying Blind Problem

While the previous analysis sheds light on the desirability of interventions in a network

economy with limited liability and bankruptcy costs, it misses a fundamental point. In

reality, lack of detailed information, coupled with the opacity and complexity of interbank

exposures, makes it hard to assess how such exposures react in stressful conditions. Thus, it

is reasonable to think that, when designing interventions, regulators are unable to ascertain

the susceptibility of the economy to contagion.

A. Optimal interventions when flying blind

Within my model, the susceptibility of the economy to contagion is jointly determined by

the architecture of Gn and p. Provided how shocks propagate throughout the network, the

simplest way to introduce uncertainty regarding such susceptibility is by making p random.

In what follows, I explore the optimal policy intervention when p is unknown. Absent any

other information, suppose the planner believes p ∼ F [pL, pH ], where F denotes an arbitrary

continuous distribution, with 0 < pL < pH ≤ 1. Hereinafter, f ≡ dF denotes p’s probability

density function and µk denotes the kth (raw) moment of F , that is, µk ≡
∫ pH
pL

pkf(p)dp,

with µ0 = 1. Provided those beliefs, the planner selects x ∈ ∆n so as to maximize

EF (W (x, p)) ≡
∫ pH

pL

W (x, p) f(p)dp, (10)

where W (x, p) is defined as in equation (6). The next proposition characterizes the optimal

policy intervention when p is unknown.

PROPOSITION 3 (Optimal Interventions When Flying Blind): Suppose µ̄ ≡ maxk∈{1,··· ,n−1} µk

is smaller than the norm of the largest eigenvalue of G. Absent any other information, the

socially optimal investment choice under uncertainty regarding p, xuso ≡ (xuso,1, · · · , xuso,n)′, is

given by

xuso =
1

2

(1− κ

βn

)
I−

I +

(
n−1∑
k=1

µkG
k

)−1
−11. (11)

6Note that limn→∞ (xe − xso) yields the same result than equation (9). This implies that, within the
baseline model, limited liability would represent the main source of the market equilibrium inefficiency in
large economies.
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The comparison between equations (7) and (11) underscores that both the network

architecture and the knowledge available to the planner play a crucial role in determining the

socially optimal investment choice when regulators are flying blind. While the first terms on

the right hand side of both equations are equal, the second terms are markedly different. In

particular, the second term on the right hand side of equation (7) is only affected by p and

the number of direct neighbors of a bank (captured by matrix G). However, the second term

on the right hand side of equation (11) is affected by both the complete architecture of Gn
(captured by the powers of matrix G) and the shape of F (captured by its moments).

To better appreciate how the interplay between the network architecture and F reshapes

the optimal intervention, it is worth noting that equation (11) can be rewritten as

xuso =
1

2

(
U−1
F −

(
κ

βn

)
I

)
1, (12)

where UF is a n× n matrix defined in terms of the moments of F and the powers of G as

the following sum

UF ≡
∫ pH

pL

(
I + pG + p2G2 + p3G3 + · · ·

)
f(p)dp (13)

=

(∫ pH

pL

f(p)dp

)
︸ ︷︷ ︸ I +

(∫ pH

pL

pf(p)dp

)
︸ ︷︷ ︸G +

(∫ pH

pL

p2f(p)dp

)
︸ ︷︷ ︸G2 + · · ·

µ0 = 1 µ1 µ2

Define B ≡ µ1G + µ2G
2 + · · · . Then, matrix U−1

F can be rewritten as

U−1
F = (I + B)−1. (14)

For ease of exposition, assume that G2 6= 0 and ||B|| < 1, where || · || denotes the euclidean

norm operator. Because ||B|| < 1, it follows from applying a Taylor series expansion to the

above expression that

U−1
F = (I + B)−1 = I−B +O(B2) ≈ I−B. (15)

It then directly follows from equations (12) and (15) that the higher µ2, the larger the

elements in B, and, thus, the smaller xuso. Intuitively, the larger µ2, the less precise is the

knowledge available to the planner. While the planner is risk neutral, she understands she

might make non-optimal decisions ex-ante as a result of not knowing the precise value of p.

Therefore, she preemptively requires banks to hold more liquid portfolios so as to prevent
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contagion in case p is larger than expected. In other words, uncertainty pushes the planner

toward more caution.

In addition, it follows from equation (13) that the kth moment of F only alters xuso as

long as there are paths of length k within Gn. This is because (1) the kth moment of F

only affects xuso when Gk 6= 0 and (2) Gk captures the number of paths of length k between

any pair of banks. In sum, in face of uncertainty regarding p, the higher the number of

paths of length k, the more relevant the kth moment of F becomes for the design of optimal

interventions. At the fundamental level, the higher the number of paths in the economy,

the more likely it is that shocks have far-reaching implications. Consequently, the larger

the negative welfare effect of ineffective interventions. Thus, the planner must pay closer

attention to higher moments of F as they allow her to quantitatively assess the likelihood of

large cascades of failures.

B. Improving network transparency

While regulators might be flying blind, they can gather detailed bank information before

designing their interventions so as to better understand how financial exposures react in

times of economic stress. For instance, in the United States, banks are examined periodically

and are required to file comprehensive reports containing granular balance sheet information

while large banks have also formal on-site exams conducted at least once every year.7 Besides

these supervisory tools, there are two important recent examples in which regulators assess

the soundness of banks: the Comprehensive Liquidity Assessment and Review (CLAR) and

the Dodd-Frank Act supervisory stress test, run annually by the Federal Reserve. In these

programs, regulators evaluate the liquidity risk profile of Bank Holding Companies (BHCs)

through a range of metrics and project whether BHCs would be vulnerable during times

of weak economic conditions. Other recent examples include programs implemented by the

SEC such as forms N-MFP and PF. Form N-MFP requires registered money market funds

to report their portfolio holdings and other information on a monthly basis, while form PF

requires private funds to report assets under management.

Although improving network transparency generates benefits, as it helps regulators to

better assess the susceptibility of the economy to contagion, it can also be socially costly. These

costs can be direct, as gathering and processing detailed bank information is expensive for

both regulators and banks, and they can also be indirect, as more transparency might decrease

banks’ confidentiality.8 As confidentiality is valuable to banks, improving transparency could

7See Spong (2000) and Tarullo (2019) for reviews of the U.S. banking system and its supervisory and
regulatory framework.

8For example, according to Prescott (2008), federal and state regulators spent nearly three billion dollars
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compromise their market position and potentially decrease market efficiency. Increasing

transparency can also generate other problems. For instance, it can decrease regulators’

ability to collect bank information (see, Prescott (2008) and Leitner (2012)), promote window

dressing among banks or lead market participants to put too much attention on public signals

(see, Morris and Shin (2002) and Angeletos and Pavan (2007)), reduce the ability of regulators

to learn from asset prices (see, Bond and Goldstein (2015)), decrease banks’ ability to produce

money-like safe liquidity (see, Dang et al. (2017)), or reduce future risk-sharing opportunities

for market participants (see, Hirshleifer (1971) and Goldstein and Leitner (2018)).

How much network transparency is then optimal? To answer this question, assume the

planner can actively decide how much transparency to acquire before designing regulation.

For simplicity, suppose she has access to a costly information technology—similar, in spirit,

to the policies mentioned above—which improves the precision of her prior information

regarding p. Assume that after paying c(τ)—where τ ≥ 0 captures the extent of network

transparency—the planner believes p ∼ Hτ [a(τ), b(τ)], with pL ≤ a(τ) < b(τ) ≤ pH . Thus,

the smallest and largest value that p takes—with positive probability under Hτ—are allowed

to potentially depend on τ . While the cost function c(τ) is exogenously determined, c(τ)

aims to capture some of the above problems associated with increasing transparency.

For ease of exposition, the (infinite) sequence of distributions {Hτ}τ≥0 generated by

(marginal) changes in τ is assumed to satisfy the following property: Hτ+ε is a mean-

preserving contraction of Hτ , with H0 ≡ F and ε > 0 arbitrarily small. Assume further that

c(τ) is convex and c(0) = 0. Assumptions on c(τ) and sequence {Hτ}τ≥0 aim to capture

the idea that higher levels of transparency are more costly to attain but less noisy. This

is because Hτ is a mean-preserving spread of Hτ+ε so that Hτ can be thought of as being

formed by spreading out one or more portions of Hτ+ε while keeping the same average.

The value to the planner of improving transparency depend on how useful such trans-

parency is for increasing the effectiveness of her intervention. Consequently, the social value

of attaining a level of transparency, τ , is defined as

V (τ) ≡ max
x∈∆n

EHτ (W (x, p)−W (x∗F , p)) = max
x∈∆n

∫ b(τ)

a(τ)

(W (x, p)−W (x∗F , p))︸ ︷︷ ︸hτ (p)dp (16)

∆W (x,x∗F , p) ,

with x∗F ≡ arg maxx∈∆n
EF (W (x, p)) and hτ ≡ dHτ .

The value function V (τ) captures the welfare gains from increasing transparency as

increments in transparency allow the planner to dampen contagion more efficiently on average.

collecting bank supervisory information (and banks spent substantially more complying with regulation) in
2005 in the United States.
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These gains have two main sources. First, more effective interventions decrease, on average, the

losses associated with forcing weakly connected banks to hold an excessively high fraction of

their portfolio in assets that yield lower expected payoffs. Second, more effective interventions

decrease, on average, the losses associated with failing to force highly connected banks to

hold more liquid portfolios so as to forestall large cascades of failures.

Here, variable τ—which jointly with Hτ , measures the planner’s uncertainty about p after

paying c(τ)—is not random. It is the choice variable that summarizes the planner’s optimal

information decision. If x∗τ ≡ arg maxx EHτ (W (x, p)), the marginal social value of increasing

network transparency is then given by

∂

∂τ
V (τ) =

∂

∂τ

(∫ b(τ)

a(τ)

∆W (x∗τ ,x
∗
F , p)hτ (p)dp

)
(17)

= ∆W (x∗τ ,x
∗
F , b(τ))

∂b(τ)

∂τ
−∆W (x∗τ ,x

∗
F , a(τ))

∂a(τ)

∂τ
+

∫ b(τ)

a(τ)

∆W (x∗τ ,x
∗
F , p)

∂hτ (p)

∂τ
dp.

Given the above assumptions, the condition that pins down the socially optimal level of

network transparency, τ ∗, is given by

∂

∂τ
V (τ)

∣∣∣∣
τ=τ∗

=
∂c(τ)

∂τ

∣∣∣∣
τ=τ∗

. (18)

That is, τ ∗ critically depends on a delicate balance. While improving network transparency is

costly, not improving transparency is also costly, as it results in welfare losses associated with

implementing ineffective bank regulation. The socially optimal level of network transparency

ensures these two forces balance each other. Importantly, as it becomes clear in the next

section, because ∂
∂τ
V (τ) depends on both Gn and the precision of the information technology,

{Hτ}τ≥0, the above tradeoff is shaped by the network architecture and the knowledge available

to the planner.

III. Comparative Statics

Comparative statics on the solution of equation (18) provides several insights on the

role that both the network architecture and the knowledge available to the planner play

in determining τ ∗. The next proposition characterizes how the socially optimal level of

transparency varies with the underlying characteristics of the economy.

PROPOSITION 4 (Comparative Statics): The socially optimal level of network transparency

satisfies the following properties.
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• Let G1
n and G2

n denote two networks defined over n banks. If for every pair of banks

(i, j) the total number of paths between i and j in G2
n is greater than or equal to the

total number of paths in G1
n, then τ ∗(G2

n) ≥ τ ∗(G1
n).

• Let {Hτ}τ≥0 and {H ′τ}τ≥0 denote two information technologies available to the planner,

with H0 = H ′0 = F . For distributions Hτ+ε and Hτ , let DKL(Hτ+ε|Hτ ) denote the

Kullback-Leibler divergence measure defined as

DKL(Hτ+ε|Hτ ) =

∫ pH

pL

hτ+ε(p) log

(
hτ+ε(p)

hτ (p)

)
dp.

If for any τ ≥ 0 and arbitrary small ε > 0, DKL(Hτ+ε|Hτ ) ≥ DKL(H ′τ+ε|H ′τ ), then τ ∗

is higher when the planner uses {Hτ}τ≥0 than when she uses {H ′τ}τ≥0.

• τ ∗ is an increasing function of β and κ.

• τ ∗ is a decreasing function of ∂c
∂τ

.

That is, the socially optimal level of transparency is reshaped by the interplay between the

network architecture, the knowledge available to the planner, and her information technology.

The first result of proposition 4 establishes that the higher the connectivity of the economy

(via higher number of paths), the more transparency is needed. As connectivity increases,

the higher the susceptibility of the economy to contagion, and, thus, the higher the social

value of effective interventions.

The second result emphasizes the key role of the information technology available to the

planner. Because the Kullback-Leibler divergence between distributions P and Q, DKL (P|Q),

can be interpreted as a measure of the information gained from using P rather than Q,

the second result highlights the fact that the more information is gained by improving

transparency, the more effective interventions are on average. This is because the more

effective the information technology, the higher the level of transparency that can be achieved

per unit cost. Importantly, using this result in conjunction with the first result implies that

the higher the network connectivity, the more relevant is the effectiveness of the information

technology available to the planner.

The third result shows that the higher β or κ, the more costly ineffective interventions

are, and thus, the more transparency is needed. This is because the higher β, the higher

the costs of forcing a bank to hold a more liquid portfolio. Because such an intervention is

only warranted as long as it generates a sufficiently large drop in the likelihood of contagion,

the higher β, the higher the planner’s incentives to increase transparency as so to improve

the effectiveness of her interventions. Similarly, the higher κ, the higher the social costs

associated to bankruptcies. Hence, the higher the planner’s incentives to prevent contagion,

and, thus, the higher the social value of network transparency. Finally, the fourth result
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establishes a simple point. The more costly it is to improve transparency, the lower is the

socially optimal level of transparency.

While proposition 4 provides general properties of τ ∗, I now consider a few simple examples

so as to emphasize how changes in the network architecture and the knowledge available to

the planner can affect the extent of network transparency that is socially optimal. Suppose

Gn is as in figure 1(a), c(τ) ≡ 3γ
2
τ 2, F ≡ U

[
1
5
− 1

2×5
, 1

5
+ 1

2×5

]
, Hτ ≡ U

[
1
5
− 1

2×τ ,
1
5

+ 1
2×τ

]
,

with τ ≥ 5, κ = 0, β = 1, and γ = 10−9. In both panels of figures 2 and 4, τ ∗0 represents the

optimal level of network transparency under this benchmark parameterizarion.

i j k
p p

(a)

i

j

k
p

p p

(b)

Figure 1. Two network architectures among three banks.
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(b) Varying F

Figure 2. Comparative Statics when changing Gn and F . Marginal benefit (MB) functions

refer to ∂V (τ)
∂τ

while marginal cost (MC) functions refers to ∂c(τ)
∂τ

. As parameters change, the
optimal level of network transparency transitions from τ ∗0 to τ ∗1 .

Relevance of the network architecture. Figure 2(a) illustrates the pivotal role the

network architecture plays in determining τ ∗. τ ∗1 represents the optimal level of network

transparency should the network be as in figure 1(b) rather than as in 1(a). Why is the

optimal level of transparency lower in 1(a) than in 1(b)? In 1(b), the network is more

susceptible to contagion because there are more paths through which failures can propagate.
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Consequently, in 1(b), transparency commands a higher social value because it allows the

planner to design interventions that are more effective on average. As a result, the marginal

benefit of increasing transparency is larger than in the benchmark parameterization, and,

thus, τ ∗1 > τ ∗0 .

0.2
p

f(p)

Figure 3. Planner’s prior beliefs, F ∈ {U [0.1, 0.3],N (0.2, (1/30)2)} .

Relevance of the information technology available to the planner. Figure 2(b)

highlights the importance of the shape of F when determining τ ∗. τ ∗1 represents the optimal

level of network transparency should F and Hτ be N
(

1
5
, ( 1

30
)2
)

and N
(

1
5
, ( 1

6τ
)2
)
, respectively;

figure 3 illustrates the difference between uniform and (truncated) normal priors. Intuitively,

when priors are normally distributed, they are more precise to begin with than when they

are uniformly distributed. This is because the uniform distribution on an interval [pL, pH ] is

the maximum entropy distribution among all continuous distributions supported in [pL, pH ].

That is, in the uniform case, all values of p are equally likely, while, in the normal case, values

closer to pL or pH are considerably less likely. Consequently, increasing transparency when

priors are uniformly distributed provides more valuable information to the planner. This is

why the marginal benefits of increasing transparency are smaller in the normal case than in

the uniform case, and, thus, τ ∗1 < τ ∗0 .

Relevance of payoffs and the costs of improving transparency. Figure 4 illustrates

how τ ∗ varies with changes in the spread between expected assets payoffs, β, and the social

costs associated with improving transparency. A higher β makes ineffective interventions

more costly, as they force weakly connected banks to hold a higher than optimal fraction of

their portfolio in assets yielding low expected payoffs. As a result, an increase in β increases

the value of transparency to the extent to which such transparency allows the planner to

implement more effective interventions on average. Hence, an increase in β generates an

increase in τ ∗. Finally, figure 4(b) illustrates how τ ∗ changes with γ. The intuition here is

simple. The higher γ, the more costly it is to achieve higher levels of transparency, and, thus,

the lower is τ ∗.
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(a) Varying β
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(b) Varying γ

Figure 4. Comparative Statics when changing β and γ. Marginal benefit (MB) functions

refer to ∂V (τ)
∂τ

while marginal cost (MC) functions refers to ∂c(τ)
∂τ

. As parameters change, the
optimal level of network transparency transitions from τ ∗0 to τ ∗1 .

IV. Discussion

To highlight the applicability of the above results, this section discusses some assumptions

and possible extensions of the baseline model.

A. A more flexible shock propagation mechanism

Within the baseline model, a bank’s portfolio liquidity matters for its survival when it is

directly hit by the adverse liquidity shock, ε. Yet, it does not matter when a bank is indirectly

affected by ε through its network exposures. While this simplifying assumption helps the

baseline model to deliver closed-form solutions, it does not drive the main results. Having a

bank’s portfolio liquidity matter for its resilience to idiosyncratic shocks already brings most

of the relevant trade-offs into the model. This is because a bank’s failure probability not only

depends on the likelihood of contagion, but also depends on the likelihood of being directly

hit by ε. Consequently, a bank’s failure probability can be reshaped by its portfolio decision

(see equation 2). Appendix A shows that the results of the baseline model continue to hold

in a more flexible setting in which a bank’s portfolio decision alters its failure probability,

independently of which bank is initially affected by ε.
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B. Heterogeneity across banks

With the exception of their number of exposures, banks are ex-ante identical within the

baseline model. While the baseline model considers bankruptcy costs so as to capture the

impact of banks’ decisions on economic agents outside the banking sector, the model can be

extended so that different banks could potentially impose distinct externalities when failing.

For example, suppose that if bank i fails, society suffers some exogenous loss l(ni), where

ni denotes the number of exposures of i and l(·) is a non-decreasing function of ni. After

including l(·) into the regulator’s objective, optimal prudential and transparency policies can

be computed. In this case, the regulator will have a stronger motive to increase the liquidity

of highly connected banks because of two reasons. First, the failure of a highly connected

bank not only exposes many other banks to failure but also increases the losses of many other

economic agents outside the banking sector. Second, in face of uncertainty regarding p, the

regulator cares about events in which p turns out to be higher than expected and the failure

of a single bank can have far-reaching negative economic effects. This uncertainty induces

the regulator to force highly connected banks to hold even more liquid portfolios. Notably,

these results are consistent with the idea behind capital surcharges on global systemically

important banks (G-SIBs) implemented in several countries in recent years.

C. Costs of transparency

While the costs associated to improving network transparency are exogenously determined

within the baseline model, the nature of my results remains the same as long as higher levels

of transparency are more socially costly to attain. Although the particular functional form

associated to c(τ) will clearly vary with the underlying economic model, at the fundamental

level, higher levels of transparency would also be more socially costly to attain in the following

environments:

• Consider an economy wherein (1) regulators need banks’ cooperation to receive in-

formation and (2) banks’ profits depend on investors’ expectations—which, in turn,

are affected by transparency—as banks raise funds from investors to finance private

investments opportunities. As illustrated in Prescott (2008), higher transparency in

such environments will increase the cost of cooperation for banks, potentially reducing

the quality of information regulators receive, thereby increasing the amount of resources

regulators spend to collect information.

• Consider an economy wherein (1) regulators not only use information about the network

but also use information from banks’ stock prices when designing interventions, and

(2) changes in network transparency alter the incentives of private investors to gather
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detailed bank information. As illustrated in Bond and Goldstein (2015) and Goldstein

and Yang (2017), under certain circumstances, more transparency can weaken the

incentives of investors to acquire more precise bank information. Intuitively, as both

network transparency and detailed bank information produced by investors are two

pieces of information about banks’ fundamentals, they are substitutes. Consequently,

more transparency motivates investors to decrease their expenses to generate more

precise bank information. In other words, more transparency crowds out the production

of private information. As less information is produced by private investors, banks’

asset prices become less informative, and, as a consequence, less useful for regulators.

• Consider an economy similar to the one described above in which changes in network

transparency alter the incentives of private investors to produce detailed bank informa-

tion. Rather than assuming regulators use information from banks’ stock prices, assume

that their decision-making is only based on network information. Assume further that

information conveyed by asset prices guides corporate decisions of agents outside the

banking sector. For example, firms might pay attention to variation on assets prices in

order to evaluate their investment decisions or to assess when is the best time to seek

external financing.9 As before, under certain conditions, the more transparency, the

lower the informativeness of assets prices, as transparency crowds out the production

of private information. As a result, the higher the resource misallocation outside the

banking sector as firms based their corporate decisions on less precise information. In

sum, higher levels of transparency are more socially costly to attain as they reduce

the ability of prices to aggregate information from market participants, which, in turn,

might decrease the efficiency of corporate decisions.

D. Nature of contagion

While exposures within the baseline model aim to capture interdependencies among

financial institutions, the proposed framework can also be applied to other settings wherein

regulators are fundamentally uncertain about the susceptibility of a complex system to

contagion. An important example is the ongoing COVID-19 pandemic. Importantly, the

lesson that network uncertainty pushes regulators toward more caution applies both for

financial network contagion and epidemic contagion, and for similar reasons.

9See Bond et al. (2012) for a survey on the literature exploring the interplay between financial markets
and real efficiency.
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V. Conclusion

This paper develops a simple and tractable conceptual framework to study the problem

of regulating a network of interdependent financial institutions when there is uncertainty

regarding its susceptibility to contagion. With this framework in hand, I characterize optimal

interventions as a function of the network architecture and the knowledge available to

policymakers.

While the proposed framework does not capture the incentives underlying the formation

of linkages among financial institutions, it provides a tractable approximation of the problem

faced by policymakers nowadays, where the lack of detailed information and the complexity

of interactions among financial institutions besets their regulation and supervision. In doing

so, this framework provides a benchmark to which other models can be compared to.

A key takeaway from this analysis is that optimal interventions are fundamentally about

striking the right balance among various dimensions. While improving network transparency

can be costly, as processing and gathering detailed information is costly for both policymakers

and financial institutions, improving transparency might be worth the cost. This is because

transparency has an intrinsic social value to the extent that it helps policymakers increase

the effectiveness of their interventions. Importantly, this value, which dictates how much

transparency is socially optimal within my model, is reshaped by the interplay between the

network architecture and the precision of information technologies available to policymakers.

Finally, my emphasis on the relevance of network uncertainty should not be understood

as downplaying the role that leverage, size, and short-term funding play in the design of

optimal policies. As the network architecture interacts with these variables, regulation should

be mindful of such an interaction so as to take into consideration how financial (and non

financial) institutions react to regulation and how such reactions contribute to financial

stability.

Appendix A Robustness

This appendix shows that the properties derived from the stylized model of section I
continue to hold in a more general setting.

A A more general shock propagation process.

Take the same environment of the baseline model with one exception. Now assume that
the following events happen simultaneously in times of economic stress.

• Every bank is hit by an adverse idiosyncratic liquidity shock. Let εi ∼ E(0, ε̄) denote
bank i’s idiosyncratic shock; E denotes the cumulative distribution function of εi
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with 0 < ε̄ < 1. I assume function E is continuous and variables {ε1, ε2, · · · , εn} are
independent and identically distributed.
• Exposures propagate idiosyncratic shocks from one bank to another. In particular, if

there is a path of length k from bank i to bank j, the fraction of εi that percolates from
i to j is pkh(xi)εi, where h(xi) is an increasing function of xi with 0 < h(xi) < 1, ∀xi;
as in the baseline model, xi denotes the fraction of bank i’s portfolio invested in the
illiquid asset. Then, the overall size of the liquidity shock that hits bank i in times of
economic stress is given by

zi = εi +
∑
j∈Gi

ωijh(xj)εj, (A1)

where Gi denotes the set of banks that are (directly or indirectly) connected to bank i
and ωij is a function of p and the architecture of Gn. Given how shocks propagate along
the network, ωij equals

ωij =
∞∑
k=1

nk(i, j)p
k, (A2)

where nk(i, j) denotes the number of paths of length k between banks i and j.
• A bank fails if its holdings of liquid assets are smaller than the size of its liquidity shock.

Namely, bank i fails if, and only if, zi > (1− xi).

A couple of properties of the aforementioned mechanism are worth noting. First, the more
distant banks i and j are from each other, the less likely shocks to i affect j (and vice-versa).
For example, if there is only one path between i and j, then ωij = pk, where k denotes the
length of such a path. Second, the fraction of εi that percolates from i to its (direct and
indirect) neighbors is an increasing function of xi. This formulation aims to capture a simple
idea. The higher the liquidity of bank i’s portfolio, the more resilient to liquidity shocks bank
i must be, and, thus, the less prone bank i is to propagate shocks.

The next assumption ensures that a bank’s portfolio decision alters its default probability.

ASSUMPTION 1: Given p and the network Gn, ε̄ is sufficiently small so that

Pp[0 ≤ zi < 1] = 1 ∀i ∈ {1, 2, · · · , n} . (A3)

The following condition is a direct implication of assumption 1,

lim
xi→0

P[zi > (1− xi)] = 0 ∀i ∈ {1, 2, · · · , n} . (A4)

That is, a bank eventually becomes resilient to adverse liquidity shocks as its portfolio
becomes highly liquid. This assumption implies that a bank’s liquidity matters for its survival.
The higher the liquidity of a bank’s portfolio, the higher the chances such a bank is able to
weather negative idiosyncratic shocks as well as negative shocks that propagate throughout
the network. Notably, this is not the case within the stylized model of section I. The reason
is that, within the baseline model, a bank’s liquidity only matters if a bank is directly hit by
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a shock. When a bank is indirectly hit by a shock that propagates through network linkages,
its liquidity does not alter its default probability.

EXAMPLE 1: To illustrate the key properties of the above shock propagation mechanism,
suppose the network is as in figure 1(a). Then,

zi = εi + ph(xj)εj + p2h(xk)εk, (A5)

zj = εj + ph(xi)εi + ph(xk)εk,

zk = εk + ph(xj)εj + p2h(xi)εi.

That is, the higher p the higher z’s, all else equal. The higher the susceptibility of the network
to contagion, the higher the fraction of shocks that propagate throughout the network, and,
thus, the higher the size of liquidity shocks affecting banks. In addition, the higher xj (or
xk), the higher zi. The less liquid bank j’s portfolio, the more exposed banks i and k are to
idiosyncratic shocks affecting bank j.

Let #»ε denote the n× 1 vector of idiosyncratic liquidity shocks. Hereinafter, I write #»a ◦ #»

b
to denote the Hadamard product of vectors #»a and

#»

b . Provided that the kth power of G
keeps track of the number of paths of length k between every pair of banks, the size of the
shock affecting bank i, zi, can be rewritten as

zi = εi +
∑
j∈Gi

ωijh(xj)εj (A6)

= ei
#»ε + eipGh(x) ◦ #»ε + eip

2G2h(x) ◦ #»ε + · · ·
= ei

#»ε + ei
(
pG + p2G2 + · · ·

)
h(x) ◦ #»ε

= ei
#»ε − eih(x) ◦ #»ε + ei

(
I + pG + p2G2 + · · ·

)
h(x) ◦ #»ε

= ei
(
(1− h(x)) + (I− pG)−1h(x)

)
◦ #»ε

where h(x) denotes the n × 1 vector whose i element corresponds to h(xi); as before, p is
assumed to be sufficiently small so that the matrix (I− pG)−1 is well-defined.

Let Fi and fi denote the cumulative distribution function and the probability density
function of zi, respectively. Given E , h(·), x, p, and G, equation (A6) shows how Fi and fi
can be derived for each bank in the economy.

B Market equilibrium

Given the aforementioned shock propagation mechanism, a value for p, and a collective
investment choice x, the utility of bank i is then

Ui (x∗, p) ≡ βxiPp (bank i does not fail) (A7)

= βxiPp (zi ≤ (1− xi)) = βxiFi(1− xi).

An interior Nash-equilibrium for the simultaneous move n-bank game with payoffs as in (A7)

satisfies ∂Ui(x∗,p)
∂xi

= 0 with 0 < x∗i < 1 for all i ∈ {1, 2, · · · , n} . Provided that the shape of
the distribution of zi does not depend on xi (see equation (A6)), the first order condition of
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bank i can be written as

∂Ui (x∗, p)
∂xi

= βFi(1− x∗i )− βx∗i fi(1− x∗i ) = 0 =⇒ x∗i =
Fi(1− x∗i )
fi(1− x∗i )

. (A8)

The next assumption ensures that there exists a unique solution of equation (A8) for all i.

ASSUMPTION 2: Define Qi(z) ≡ Fi(z)
fi(z)

. Assume that E, h(·), p, and G are such that Qi(z)

is an strictly increasing function of z, for all i ∈ {1, 2, · · · , n} .

xi0 1

Qi(1− xi)

Qi(1− x∗i )

x∗i

Qi(1− xi)

xi
Qi(1)

Figure 5. Solution of bank i’s first order condition.

With assumptions 1 and 2 in hand, it is simple to show that the equilibrium is unique.
First, note that Qi(0) = 0 because εi ∼ E(0, ε̄). Assumption 1 ensures that Qi(1) > 0.
Assumption 2 ensures that Qi(1− xi) is a strictly decreasing function of xi. Consequently,
there exists a unique point 0 < x∗i < 1 such that x∗i = Qi(1− x∗i ) (see figure 5).

EXAMPLE 2: To illustrate the generality of above framework, suppose that εi ∼ N (µ, σ2),
∀ i. To keep things simple, assume that µ and σ are chosen so that Pp [0 < εi < ε̄] ≈ 1. Thus,
zi is approximately normally distributed with mean Ep[zi] and variance Vp[zi], where

Ep[zi] = µ

(
1 +

∑
j∈Gi

ωijh(xj)

)
and Vp[zi] = σ2

(
1 +

∑
j∈Gi

ω2
ijh

2(xj)

)
. (A9)

Therefore,

Qi(z) =

1
2

(
1 + erf

(
z−Ep[zi]√

2Vp[zi]

))
1√

2πVp[zi]
exp

(
−1

2

(
z−Ep[zi]√

Vp[zi]

)2
) , (A10)
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where erf(y) = 2√
π

∫ y
0
e−t

2
dt denotes the error function.

It directly follows from equation (A10) that Qi(z) is an increasing function of z. Con-
sequently, there exists a unique solution of the market equilibrium problem and the optimal
investment choice of bank i, x∗i , approximately satisfies

x∗i =

1
2

(
1 + erf

(
(1−x∗i )−Ep[zi]√

2Vp[zi]

))
1√

2πVp[zi]
exp

(
−1

2

(
(1−x∗i )−Ep[zi]√

Vp[zi]

)2
) . (A11)

C Properties of the market equilibrium

While the next assumption is not critical for the results, it helps to illustrate that the
properties exhibited by the market equilibrium in the baseline model are also satisfied by the
market equilibrium within the more general framework.

ASSUMPTION 3: Assume that E, h(·), and G are such that

∂

∂w
(Pp(zi ≤ z)) ≤ ∂

∂w
(Pp(zi = z)) , (A12)

with w ∈ {p, ni}, for all i ∈ {1, 2, · · · , n} and z ∈ (0, 1); ni denotes the number of exposures
of bank i.

The following example emphasizes that the above assumption does not necessarily impose
severe restrictions on (1) the network architecture, (2) function h(·), or (3) function E .

EXAMPLE 3: As in example 2, suppose εi ∼ N (µ, σ2), ∀ i, where µ and σ are chosen so
that Pp [0 < εi < ε̄] ≈ 1. Thus, zi is approximately normally distributed. It directly follows
from equation (A6) that zi is an increasing function of both p and ni, all else equal. To fix
ideas, suppose w = p. Figure 6 illustrates how functions Fi and fi change as one varies p
from p0 to p1, with p0 < p1.

0.2 0.4 0.6 0.8 1.0
zi

1

2

3

4

fi

z

Figure 6. Variation in Fi and fi due to changes in p when εi’s are normally distributed.
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The higher p, the more likely failures propagate along the network. Consequently, the
higher the values that zi can take. As functions Fi and fi vary with p, assumption 3 ensures
that the rate at which pdfs fi change is higher than the rate at which CDFs Fi change. As
figure 6 shows, assumption 3 is satisfied when zi’s are approximately normally distributed.

Before studying the properties of the market equilibrium, let me briefly discuss the
intuition behind assumption 3. Assumption 3 implies that banks preemptively hold more
cash to decrease their failure probabilities in face of an increment in p. This is because an
increase in p makes the network more prone to contagion. The reason behind this result is
that assumption 3 ensures that Qi is decreasing in p. Figure 7 illustrates the mechanism.

xi0 1

Qi(1− xi)

Qi(1− x∗i , p0)

Qi(1− x∗i , p1)

x∗i (p0)x∗i (p1)

Qi(1− xi, p0)

xi

Qi(1− xi, p1)

Qi(1)

Figure 7. Solution of bank i’s first order condition as p moves from p0 to p1, with p0 < p1.

Taking into consideration the above discussion, it is easy to show that x∗i is decreasing in
both p and ni. First, note that x∗i is a function of p, and, thus, function Qi is an implicit
function of p. Thus, in equilibrium, the following equality holds

x∗i (p) = Qi(x
∗
i (p), p) =⇒ ∂x∗i

∂p
=
∂Qi

∂x∗i

∂x∗i
∂p

+
∂Qi

∂p
=⇒ ∂x∗i

∂p

(
1− ∂Qi

∂x∗i

)
=
∂Qi

∂p
. (A13)

Given how shocks propagate, the shape of Qi does not depend on x∗i (see equation (A6)).
Therefore,

∂x∗i
∂p

=
∂Qi

∂p
=

∂

∂p

(
Pp(zi ≤ z)

Pp(zi = z)

)
. (A14)

It follows from equations (A2) and (A6) that zi increases as p increases. This, in
turn, implies that Pp(zi ≤ z) is a decreasing function of p. Assumption 3 ensures that
∂
∂p

(Pp(zi ≤ z))Pp(zi = z)− Pp(zi ≤ z) ∂
∂p

(Pp(zi = z)) ≤ 0, and, thus, ∂Qi
∂p
≤ 0. Therefore, x∗i

is a decreasing function of p.
Following a similar argument, it can be shown that x∗i is decreasing in ni. As the number

of exposures of bank i increases, zi increases, thereby decreasing Pp(zi ≤ z). Because x∗i is a
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function of ni, Qi is an implicit function of ni so that

x∗i (ni) = Qi(x
∗
i (ni), ni) =⇒ ∂x∗i

∂ni
=
∂Qi

∂x∗i

∂x∗i
∂ni

+
∂Qi

∂ni
=⇒ ∂x∗i

∂ni

(
1− ∂Qi

∂x∗i

)
=
∂Qi

∂ni
. (A15)

Assumption 3 ensures that ∂Qi
∂ni
≤ 0, and, thus, x∗i decreases as ni increases.

D Market equilibrium inefficiency

As in the baseline model, the market equilibrium is also inefficient within the more general
framework. This can be shown by analyzing the social planner’s problem. The planner selects
{xi}i=1···n so as to maximize

W (x, p) =
n∑
j=1

βxjFj(1− xj)− κ(1− Fj(1− xj)). (A16)

Consequently, the ith first order condition is given by

βFi(1− xi)− (βxi + κ)fi(1− xi) +
∑
j∈Gi

(βxj + κ)
∂Fj
∂xi

∣∣∣∣
(1−xj)

= 0. (A17)

It is worth noting that
∂Fj
∂xi

∣∣
(1−xj)

≤ 0. This is because an increase in xi increases zj, thereby

decreasing the probability mass in the left tail of fj. As a result, Fj is decreasing in xi.
Equation (A17) then implies that bank i’s socially optimal investment choice, xsoi , satisfies

xsoi +
κ

β
+ δi = Qi(1− xsoi ), (A18)

with δi ≡ −1
βfi(1−xsoi )

∑
j∈Gi(βx

so
j + κ)

∂Fj
∂xi

∣∣
(1−xsoj )

≥ 0.

Figure 8 illustrates the wedge between bank i’s socially optimal investment choice and i’s
investment choice at the market equilibrium. The higher bankruptcy costs, the higher the
market equilibrium inefficiency as banks do not bear these costs when failing. Importantly,
even when κ = 0, the market equilibrium is inefficient because δi > 0 as long as Gi is nonempty.
In the market equilibrium, bank i fails to internalize the effect of its investment choice on
the likelihood that its (direct and indirect) neighbors fail. Consequently, the more prone to
contagion the network is, the higher the market inefficiency (which is exactly what happens
when p increases).

E Optimal interventions when flying blind

As in the baseline model, uncertainty can push the planner toward more caution depite
the fact that she is risk-neutral. Continue to assume that the planner believes p ∼ F [pL, pH ],
where F denotes an arbitrary continuous distribution, with 0 < pL < pH ≤ 1, f(p) denotes
p’s probability density function, and µk denotes the kth (raw) moment of F , with µ0 = 1.
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xi

xi + κ
β

+ δi

0 1

Qi(1− xi)

Qi(1− x∗i )

Qi(1− xsoi )

x∗ixsoi

Qi(1− xi)

xi
Qi(1)

Figure 8. Comparison between the socially optimal portfolio allocation and the market
equilibrium allocation within the general framework.

Provided those beliefs, the planner selects x ∈ ∆n so as to maximize

EF (W (x, p)) ≡
∫ pH

pL

W (x, p) f(p)dp. (A19)

Consequently, the ith first order condition is given by∫ pH

pL

{
βFi(1− xi, p)− (βxi + κ)fi(1− xi, p) +

∑
j∈Gi

(βxj + κ)
∂Fj(·, p)
∂xi

∣∣∣∣
(1−xj)

}
f(p)dp = 0, (A20)

where Fi, fi, and Fj are explicitly written as functions of p to emphasize the importance
of uncertainty regarding the precise value of p for selecting the socially optimal investment
choice. Therefore, bank i’s socially optimal investment choice under uncertainty, xuso,i, satisfies

xuso,i +
κ

β
+ δi = Qi(1− xuso,i), (A21)

with

δi ≡
−
∑

j∈Gi(βx
u
so,j + κ)

∫ pH
pL

∂Fj(1−xuso,j ,p)
∂xi

f(p)dp

β
∫ pH
pL

fi(1− xuso,i, p)f(p)dp
and Qi(1− xuso,i) ≡

∫ pH
pL

Fi(1− xuso,i, p)f(p)dp∫ pH
pL

fi(1− xuso,i, p)f(p)dp
.

To appreciate how uncertainty alters the planner’s problem, it is illustrative to analyze the
difference between equations (A18) and (A21). For ease of exposition, suppose one focuses on
a particular bank, say bank i, for which Qi(1− xi, p = µ1) = Qi(1− xi). If δi(p = µ1) = δi,
bank i’s socially optimal investment choice is equivalent to the one obtained after solving
the planner’s problem assuming p equals µ1 with certainty. In this case, the regulator only
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cares about µ1 as all other moments of F are irrelevant from her perspective. However, if
δi(p = µ1) 6= δi, uncertainty might push the regulator toward more caution, despite that she
is risk-neutral. For example, if p can take certain values under which default probabilities of
some banks are highly affected by i’s portfolio allocation, then δi(p = µ1) < δi. Consequently,
xuso,i < xsoi . Figure 9 illustrates the mechanism.

xi

xi + κ
β

+ δi

xi + κ
β

+ δi

0 1

Qi(1− xi)

Qi(1− x∗i )

Qi(1− xsoi )

x∗ixsoixuso,i

Qi(1− xi)

xi
Qi(1)

Figure 9. Comparison between socially optimal portfolio allocations and the market
equilibrium allocation within the general framework.

Appendix B Proofs

This appendix contains derivations of propositions and corollaries mentioned in the body
of the paper.

Proof of proposition 1. An interior Nash-equilibrium for the simultaneous move n-bank game
with payoffs described in (4) satisfies ∂Ui(x∗,p)

∂xi
= 0 with 0 < x∗i < 1 for all i ∈ {1, 2, · · · , n} .

The first order condition of bank i can be written as

β(1− eiP) = βxi (B1)

because ∂eiP
∂xi

= 1. Equation (B1) can be rewritten in matrix notation as

(1−P) = x. (B2)

Define Cp ≡ pG. Because P = (I−Cp)
−1x, banks’ collective investment choice at equilibrium,
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xe, is given by

xe = (I + (I−Cp)
−1)−11, (B3)

which is the unique interior equilibrium. Because the maximum length of a path in a network
of size n is (n− 1), Gk = 0, for all k ≥ n− 1, where 0 denotes the n× n matrix of zeros. As
a result, the above equation can be rewritten as,

xe =

I +

(
n−1∑
k=0

pkGk

)−1
−1

1. (B4)

The existence of a non-interior Nash-equilibrium can be disregarded using a contradiction
argument as in Ballester et al. (2006).

Proof of corollary 1. It directly follows from (B4) that x∗i is an increasing function of β. To see
why x∗i is a decreasing function of p, it is worth noting that (I+(I−Cp)

−1)−1(I+(I−Cp)
−1) = I.

Hence,

(I + (I−Cp)
−1)−1 = I− (2I−Cp)

−1, (B5)

so that xe can be rewritten as

xe = (I− (2I−Cp)
−1)1. (B6)

As a result,

∂eixe
∂p

= −ei
∂

∂p
(2I−Cp)

−11 (B7)

= ei(2I−Cp)
−1

(
∂

∂p
(2I−Cp)

)
(2I−Cp)

−11

= −ei(2I−Cp)
−1G(2I−Cp)

−11 < 0.

Hence, x∗i is a decreasing function of p.
Let G′ denote the adjacency matrix G after adding an extra exposure between bank i

and any other bank. Let x∗∗ denote the market equilibrium in a network whose adjacency
matrix is G′. It is illustrative to analyze the difference ei (x

∗ − x∗∗). It follows from the above
computations that

ei (x
∗ − x∗∗) = −ei

(
(2I−Cp)

−1 −
(
2I−C′p

)−1
)

1

= −1

2
ei

((
I− p

2
G
)−1

−
(
I− p

2
G′
)−1
)

1 (B8)
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For p sufficiently small,
(
I− p

2
G
)−1

can be rewritten as(
I− p

2
G
)−1

= I +
p

2
G +

(p
2

)2

G2 + · · · (B9)

Hence, (
I− p

2
G
)−1

−
(
I− p

2
G′
)−1

=
p

2
(G−G′) +

(p
2

)2 (
G2 −G′2

)
+ · · · (B10)

Consequently,

ei (x
∗ − x∗∗) = −p

4
ei

(
(G−G′) +

p

2

(
G2 −G′2

)
+ · · ·

)
1 > 0. (B11)

Thus, the higher the number of exposures of bank i, the smaller x∗i .

Proof of proposition 2. The planner selects x so as to maximize

W (x, p) ≡
n∑
j=1

Ep (πj|x) =
n∑
j=1

πejPp (j does not fail)− κPp (j fails) . (B12)

The above equation can be rewritten as

W (x, p) = n

(
n∑
j=1

(βxj)−
n∑
j=1

(βxj)ejP

)
(B13)

= n (1′βx− βx′P)

= n
(
β1′x− κ

n
1′(I−Cp)

−1x− βx′(I−Cp)
−1x
)
.

Consequently, the first order condition of the social planner is given by

β1′ − κ

n
1′(I−Cp)

−1 − 2βx′(I−Cp)
−1 = 0, (B14)

which implies that the socially optimal investment choice, xso, is given by

xso =
1

2

((
1− κ

βn

)
I−Cp

)
1. (B15)

Proof of corollary 2. It directly follows from (B15) that xsoi is a decreasing function of κ
while it is an increasing function of β. Additionally,

∂eixso
∂p

= −1

2
eiG1 < 0. (B16)

Hence, xsoi is a decreasing function of p.
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As before, let G′ denote the adjacency matrix G after adding an extra exposure between
bank i and any other bank. Let x′so denote the socially optimal investment choice when the
adjacency matrix of the network is G′. It is illustrative to analyze the difference ei (xso − x′so).
It follows from the above computations that

ei (xso − x′so) = −p
2
ei (G−G′) 1 > 0. (B17)

Hence, the higher the number of exposures of bank i, the smaller eixso.

Proof of corollary 3. It directly follows from propositions 1 and 2 that the wedge between
the market equilibrium and the socially optimal investment choice is given by

xe − xso = (I + (I−Cp)
−1)−11− 1

2

((
1− κ

βn

)
I−Cp

)
1 (B18)

=

(
1

2

(
1 +

κ

βn

)
I− (2I−Cp)

−1 +
1

2
Cp

)
1.

Suppose κ = 0. It directly follows from the above equation that the market equilibrium
becomes socially optimal as p → 0. This is because the likelihood of contagion becomes
negligible as p→ 0.

It directly follows from differentiating ei(xe − xso) with respect to p that,

∂ei(xe − xso)

∂p
= −ei

∂

∂p
(2I−Cp)

−11 +
1

2
eiG1 (B19)

= −ei(2I−Cp)
−1G(2I−Cp)

−11 +
1

2
eiG1

=
1

2
ei

(
G− 1

2

(
I− 1

2
Cp

)−1

G

(
I− 1

2
Cp

)−1
)

1 > 0.

Finally, the wedge between the market equilibrium and the socially optimal investment
choice is increasing in κ. The result directly follows from differentiating (B18) with respect
to κ.

Proof of proposition 3. It directly follows from its definition that

EF [W (x, p)] ≡
∫ pH

pL

W (x, p) f(p)dp

=

∫ pH

pL

n
(
β1′x− κ

n
1′(I−Cp)

−1x− βx′(I−Cp)
−1x
)
f(p)dp

= n

(∫ pH

pL

f(p)dp

)
︸ ︷︷ ︸ (β1′x)− n

(∫ pH

pL

(κ
n

1′(I−Cp)
−1x + βx′(I−Cp)

−1x
)
f(p)dp

)
,

= 1
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then

∂EF [W (x, p)]

∂x
= nβ1′ − n

(∫ pH

pL

(κ
n

1′(I−Cp)
−1 + 2βx′(I−Cp)

−1
)
f(p)dp

)
.

Consequently, the first order condition of the planner’s problem implies that the socially
optimal investment choice under uncertainty regarding p is given by

xuso =
1

2

(
U−1
F −

(
κ

βn

)
I

)
1, (B20)

where UF is a n× n matrix defined as the following sum

UF ≡
∫ b0

a0

(I−Cp)
−1f(p)dp (B21)

=

∫ b0

a0

(
I + pG + p2G2 + p3G3 + · · ·

)
f(p)dp

=

(∫ b0

a0

f(p)dp

)
I +

(∫ b0

a0

pf(p)dp

)
G +

(∫ b0

a0

p2f(p)dp

)
G2 + · · ·

=
∞∑
k=0

µkG
k =

n−1∑
k=0

µkG
k.

UF is well-defined as I assume that the moments of F are such that µ̄ ≡ maxk∈{1,··· ,n−1} µk is
smaller than the norm of the largest eigenvalue of G.

Finally, using the Woodbury matrix identity in equation (B20) yields

xuso =
1

2

(n−1∑
k=0

µkG
k

)−1

−
(
κ

βn

)
I

1 (B22)

=
1

2

I−

I +

(
n−1∑
k=1

µkG
k

)−1
−1− ( κ

βn

)
I

1

=
1

2

(1− κ

βn

)
I−

I +

(
n−1∑
k=1

µkG
k

)−1
−11

Proof of proposition 4. For ease of exposition, hereinafter suppose that the lower and upper
bounds of Hτ do not depend on τ ; such dependencies can be incorporated at the expense of
extra notation without fundamentally changing in the analysis.

First, I analyze the relationship between the number of paths and τ ∗. For a given network,
consider two interventions xτ and xF , with xτ 6= xF , xF = xτ + ∆x, and ||∆x|| < ||xF ||. For
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a given value of p, the difference in welfare from implementing such interventions is given by

∆W (xτ ,xF , p) = W (xτ , p)−W (xF , p) (B23)

= n
(
β1′xτ −

κ

n
1′(I− pG)−1xτ − βx′τ (I− pG)−1xτ

)
− n

(
β1′xF −

κ

n
1′(I− pG)−1xF − βx′F (I− pG)−1xF

)
= n

(
−β1′∆x +

κ

n
1′(I− pG)−1∆x + 2βx′F (I− pG)−1∆x− β∆x′(I− pG)−1∆x

)
.

Consequently, ∆W (xτ ,xF , p) is an increasing function of (I− pG)−1, all else equal. Because
(I− pG)−1 can be rewritten as the following sum

(I− pG)−1 = I + pG + p2G2 + · · · ,

and Gk captures the number of paths of length k between any pair of banks, then (I− pG)−1

is an increasing function of the total number of paths.
Let {Gj,n}j={0···K} denote a sequence of networks in which Gj+1,n equals Gj,n plus one more

link, G0,n = G1
n, and GK,n = G2

n. That is, the sequence {Gj,n}j={0···K} reconstructs G2
n from

G1
n. It then follows from an iterative application of the envelope theorem and inspection of

equation (B23) that (I− pG)−1 is higher in G2
n than in G1

n. In addition,

∂

∂τ
V (τ) =

∫ b

a

∆W (x∗τ ,x
∗
F , p)

∂hτ (p)

∂τ
dp. (B24)

As a result, ∂
∂τ
V (τ) must also be higher in G2

n than in G1
n. Therefore, the higher the number

of paths, the higher the marginal benefits of transparency, and, thus, the higher τ ∗.
I now analyze the relationship between the precision of the information technology available

to the planner and τ ∗. Because DKL(Hτ+ε|Hτ ) ≥ DKL(H ′τ+ε|H ′τ ), then∫ pH

pL

hτ+ε(p) log

(
hτ+ε(p)

hτ (p)

)
dp ≥

∫ pH

pL

h′τ+ε(p) log

(
h′τ+ε(p)

h′τ (p)

)
dp, ∀τ. (B25)

Define the following constants

ch =

∫ pH
pL

hτ+ε(p) log
(
hτ+ε(p)
hτ (p)

)
dp∫ pH

pL
log
(
hτ+ε(p)
hτ (p)

)
dp

and ch′ =

∫ pH
pL

h′τ+ε(p) log
(
h′τ+ε(p)

h′τ (p)

)
dp∫ pH

pL
log
(
h′τ+ε(p)

h′τ (p)

)
dp

.

It then follows from equation (B25) that∫ pH

pL

log

(
hτ+ε(p)

hτ (p)

)
dp ≥ ch′

ch

∫ pH

pL

log

(
h′τ+ε(p)

h′τ (p)

)
dp, ∀τ. (B26)
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Because
ch′
ch
≥ 1, then equation (B26) implies∫ pH

pL

log

(
hτ+ε(p)

hτ (p)

)
dp ≥

∫ pH

pL

log

(
h′τ+ε(p)

h′τ (p)

)
dp, ∀τ, (B27)

which can be rewritten as∫ pH

pL

log

1 +
hτ+ε(p)− hτ (p)

hτ (p)︸ ︷︷ ︸
 dp ≥

∫ pH

pL

log

1 +
h′τ+ε(p)− h′τ (p)

h′τ (p)︸ ︷︷ ︸
 dp, ∀τ.(B28)

≈ ∂hτ (p)

∂τ
≈ ∂h′τ (p)

∂τ

As a consequence, it follows from the above equations and the envelope theorem that

∂

∂τ
VH(τ) =

∫ b

a

∆W (x∗τ ,x
∗
F , p)

∂hτ (p)

∂τ
dp ≥

∫ b

a

∆W (x∗τ ,x
∗
F , p)

∂h′τ (p)

∂τ
dp =

∂

∂τ
VH′(τ) (B29)

That is, if DKL(Hτ+ε|Hτ ) ≥ DKL(H ′τ+ε|H ′τ ), then τ ∗ is higher when the planner uses {Hτ}τ≥0

rather than when she uses {H ′τ}τ≥0.
I now analyze the relationship between β, κ and τ ∗. It directly follows from differentiating

∂V
∂τ

with respect to β and κ that

∂2V

∂β∂τ
=

∫ b

a

∂

∂β
∆W (x∗τ ,x

∗
F , p)

∂hτ (p)

∂τ
dp and

∂2V

∂κ∂τ
=

∫ b

a

∂

∂κ
∆W (x∗τ ,x

∗
F , p)

∂hτ (p)

∂τ
dp.

It directly follows from equation (B23) that ∆W (x∗τ ,x
∗
F , p) is an increasing function of both

β and κ, all else equal. Consequently, the higher β (or κ), the higher the marginal benefit of
increasing transparency, and, thus, the higher τ ∗.

Finally, I analyze the relationship between ∂c
∂τ

and τ ∗. The intuition here is simple. The
higher the marginal cost of increasing transparency, the lower the socially optimal level of
transparency.
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