1				
	30			n .
		CL		

Macroprudential policy spillovers and international banking - Taking the gravity approach

Anni Norring Bank of Finland

RiskLab/BoF/ESRB Conference on Systemic Risk Analytics

Helsinki 23.5.2019

Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect those of the Bank of Finland.

Goal of this paper

Research questions

- Can a **gravity model** give insights on the cross-border spillovers of national macroprudential policy via international lending?
- Does the implementation of macroprudential measures (MPMs) in the origin country or the destination country have an effect on the bilateral cross-border bank asset holdings?

Preview of the results

- The gravity approach confirms the spillovers: Macroprudential regulation clearly affects cross-border bank lending
- The effects are of opposite sign for AEs and for EMDEs

The initial idea of the paper

Figure 1: The effect of MPMs

Motivation for the approach

... and contributions of the paper:

- Consider in parallel *new data on MPMs* and bilateral *locational* cross-border bank asset holdings **not combined before** Cerutti et al. (2017)
- Provide a *multi-country look* at the spillovers from MPMs via international lending with a **set of countries larger than in previous studies** Buch and Goldberg (2017), Avdjiev et al. (2017), Reinhardt and Sowerbutts (2015)
- Use the *gravity model applied for international banking* to study the spillovers from MPMs **only two prior papers**: Cerutti and Zhou (2018), Houston et al. (2012)
- Estimate the model using *Poisson pseudo-maximum-likelihood* (PPML) procedure, a method most able to handle the problems of the data and provide **more reliable results** Santos Silva and Tenreyro (2006), Brei and von Peter (2018)

Overview of data

The independent variable of interest

- Index for the use of MPMs
- The dependent variable
 - Bilateral cross-border bank asset holdings

Other controls - standard in the literature

- Economic mass of origin and destination countries: GDP
- Gravity controls: distance, contiguity, common language, common currency
- "Financial sophistication": GDP per capita
- Country and time fixed effects

Data

Results

Conclusions

The use of MPMs

- Update of Cerutti et al. (2017), based mostly on the Macroprudential Policy Survey conducted by the IMF
- Annual index for 2000-2017 and 160 countries
- An aggregate index and two sub-indices: for measures targeting financial institutions (*mpif*) and those targeting borrowers (*mpib*)

Not without caveats - Simplicity in the interest of coverage:

- Simply documents the number of MPMs implemented
- NOT changes in intensity, whether binding regulation or recommendation, differences in details across countries etc.
- The MPMs aggregated are very different and may have very different channels of effect

Conclusions

The use of MPMs

Table 1: MPMs targeting borrowers

Measure	Abbreviation
Debt-to-income ratio cap	DTI
Loan-to-value ratio cap	LTV
Index: DTI + LTV	mpib

Table 2: MPMs targeting financial institutions

Measure	Abbreviation
Time-varying/dynamic loan-loss provisioning	DP
General countercyclical capital buffer/requirement	СТС
Leverage ratio	LEV
Capital surcharges on SIFIs	SIFI
Limits on interbank exposures	INTER
Concentration limits	CONC
Limits on foreign currency loans	FC
FX and/or countercyclical reserve requirements	RRREV
Limits on domestic currency loans	CG
Levy/tax on financial institutions	TAX
Index: DP+CTC+LEV+SIFI+INTER+CONC	
+FC+RRREV+CG+TAX	mpif

The use of MPMs

Table 3: Summary statistics for mpif and mpib

Variable	Mean	Std.dev.	Min	Max	Range	Obs.
mpif	1.63	1.40	0	8	0-10	2 826
mpib	0.43	0.70	0	2	0-2	2 826

Table 4: Distribution of observations of mpif and mpib

	0	1	2	3	4	5	6	7-10
mpif	27%	29%	21%	15%	6%	2%	1%	0%
mpib	69%	19%	12%	-	-	-	-	-

NB: Countries tend to use only 0-2 measures.

The use of MPMs

A clear upward trend in the implemented MPMs - note the differences between country groups!

Figure 1: Average number of MPMs implemented across different country groups: major emerging economies, all countries, advanced economies, and all emerging and developing economies. Source: GMPI.

From Norring, 2019: Use of Macroprudential Policy Measures in Emerging Market Economies. An ONBC Info Note.

The dependent variable

Bilateral cross-border bank asset holdings

- From BIS Locational Banking Statistics
 - vs. the Consolidated Banking Statistics
- A network of bilateral holdings for pairs of origin countries and destination countries that are both BIS reporting countries or where either the origin country or the destination country is a BIS reporting country (following Brei and von Peter, 2018)
- To match with the coverage of the GMPI-data: 38 reporting countries, 119 counterpart countries and annual data for 2000-2017

Bilateral cross-border bank asset holdings

Figure 2: The matrix of bilateral bank asset holdings

	<i>j</i> reporter	<i>j</i> non-reporter
<i>i</i> reporter	Both report – choose larger	Origin reports - assets
non-reporter	Destination reports - liabilities	Neither reports – missing observation

Origin country i, destination country j

 \rightarrow Zeros are "true zeros", not missing observations

i

Bilateral cross-border bank asset holdings

Table 5: Summary statistics of the dependent variable

	ba _{ij}	$ba_{ij} > 0$
N of pairs	10 146	6 847
N of periods	18	18
N of observations	182 035	87 627
Mean*	2 300	4 779
Standard deviation*	23 223	33 294
Min*	0	1
Max*	1 481 374	1 481 374
Share of 0s	52 %	-
Median*	0	65

*In millions of dollars.

NB: The distribution is very skewed towards zeros and small holdings of bank assets

Other independent variables - totally standard

Economic mass

• Annual GDP (IMF's World Economic Outlook)

Frictions

- Population-weighted distance (CEPII's gravity database)
- Gravity controls: contiguity, common language, common colonial history, common currency (CEPII's gravity database)
- "Financial sophistication": GDP per capita (IMF's WEO)

Other controls

- Time fixed effects to control macroeconomic conditions
- Country fixed effects to control all country-specific, time-invariant features

The gravity equation to be estimated using PPML

NB: In multiplicative form, not log-linearized! Dependent variable in levels, continuous independent variables in logs

$$\begin{aligned} ba_{ij,t} = &\alpha_t * \log(gdp_{i,t})^{\beta_1} * \log(gdp_{j,t})^{\beta_2} * \log(distw_{ij})^{\theta} \\ & * e^{\lambda' z_{ij}} * \log(gdpcap_{i,t})^{\beta_3} * \log(gdpcap_{j,t})^{\beta_4} \\ & * mpif_{i,t}^{\gamma_1} * mpif_{j,t}^{\gamma_2} * mpib_{i,t}^{\gamma_3} * mpib_{j,t}^{\gamma_4} \\ & * O_i * D_j * T_t, \\ & i, j = 1, ..., 157 \text{ and } t = 1, ..., 18, \end{aligned}$$

where the origin and destination country fixed effects are included in O_i and D_j respectively, and the gravity controls are included in the term z_{ij} . The coefficients γ_1 , γ_2 , γ_3 and γ_4 measure the effect of implemented macroprudential policies. The coefficient θ measures the distance effect and composite coefficient λ arises from the theoretical microfoundations of the gravity equation.

Results of the PPML estimation

In a nutshell:

- Marginal effects broadly as expected: Effects of economic masses positive (when significant), of distance negative and of other controls largely as in previous studies
- The effects of **MPMs targeting financial institutions** highly significant, but the sign of the effect completely dependent on the income group:
 - For AEs the effect is always negative
 - For EMDEs the effect is always positive
- For MPMs targeting borrowers, the results are more similar for different country groups, but not consistent and significant across the board

Results

MPMs targeting financial institutions appear to reduce cross-border lending:

Specification:	(1)		(2)		(3)		
•	Standard gravity		Add mpib and mpif		No offshor	No offshore centers	
mpib _i	-	(-)	0.117***	(0.034)	0.111***	(0.033)	
mpib _j	-	(-)	0.011	(0.029)	0.010	(0.030)	
mpif _i	-	(-)	-0.056**	(0.025)	-0.088****	(0.024)	
mpif _j	-	(-)	-0.015	(0.026)	-0.058***	(0.019)	
log(gdp _i)	0.088	(0.267)	-0.175	(0.257)	0.134	(0.314)	
log(gdp _i)	0.861***	(0.316)	0.812***	(0.301)	1.425****	(0.395)	
log(distw _{ii})	-0.678****	(0.045)	-0.678****	(0.045)	-0.600****	(0.055)	
contig	0.004	(0.118)	0.005	(0.118)	-0.035	(0.102)	
comlangof	0.406****	(0.085)	0.406****	(0.085)	0.387****	(0.082)	
co/45	-0.055	(0.144)	-0.054	(0.144)	0.360**	(0.170)	
comcur	0.672****	(0.010)	0.671****	(0.010)	0.706****	(0.102)	
log(gdpcap _i)	0.392	(0.279)	0.682**	(0.268)	0.261	(0.316)	
log(gdpcap _i)	0.078	(0.352)	0.141	(0.320)	-0.671*	(0.385)	
R ²	0.8705		0.8725		0.910		
Pairs	10 14	16	10 146		8 942		
Observations	182 0	35	182 0	35	160 426		
Mean of <i>ba_{ii}</i>	2 301 n	ıln \$	2 301 n	ıln \$	2 282 mln \$		
Median of <i>ba_{ii}</i>	0 mln	\$	0 mlr	1\$	0 ml	n \$	
Min of ba _{ii}	0 mln	\$	0 mlr	1\$	0 ml	n \$	
Max of <i>ba_{ij}</i>	1 481 374	mln \$	1 481 374	mln \$	1 481 37	4 mln \$	

Table 6: First results with full sample

Significance at the 10%, 5%, 1% and 0.1% levels denoted by *, **, *** and ****.

The mean of, say, Netherlands and Thailand? Separate between AEs and EMDEs:

Table 7: Results for different origin countries

Specification:	(4))	(5)			
	AEs as origi	n country	EMDEs as	EMDEs as origin country		
mpib _i	0.110***	(0.035)	0.152***	(0.049)		
mpib _j	-0.009	(0.031)	0.134***	(0.048)		
mpif _i	-0.131****	(0.025)	0.111****	(0.020)		
mpif _j	-0.057***	(0.020)	-0.100****	(0.028)		
log(gdp _i)	-0.382	(0.761)	0.867****	(0.234)		
log(gdp _i)	1.345***	(0.390)	2.290***	(0.860)		
log(distw _{ii})	-0.630****	(0.058)	-1.433****	(0.120)		
contig	-0.063	(0.104)	-0.251	(0.271)		
comlangof	0.398****	(0.092)	0.516****	(0.143)		
co/45	0.128	(0.247)	0.591***	(0.179)		
comcur	0.738****	(0.109)	-2.444****	(0.493)		
log(gdpcap _i)	0.752	(0.772)	-0.329*	(0.190)		
log(gdpcap _i)	-0.620	(0.378)	-1.467	(0.916)		
R ²	0.91	55	0.7201			
Pairs	3 778		4	4 926		
Observations	67 7	20	88 424			
Mean of <i>ba_{ii}</i>	5 042 r	nln \$	267	7 mln \$		
Median of <i>ba_{ij}</i>	6 mli	n \$	0	mln \$		
Min of ba _{ii}	0 mli	n \$	r	nIn \$		
Max of <i>ba_{ij}</i>	1 481 374	4 mln \$	113 9	972 mln \$		

Significance at the 10%, 5%, 1% and 0.1% levels denoted by *, **, *** and ****.

Conclusions

A totally different story for AEs and EMDEs:

Specification:	(6)	(7) Only EMDEr			
	Only AES		Un	IY EIVIDES		
mpib _i	0.111***	(0.037)	0.031	(0.189)		
mpib _j	-0.003	(0.037)	-0.008	(0.118)		
mpif _i	-0.137****	(0.027)	0.313****	(0.070)		
mpif _i	-0.090****	(0.023)	0.287****	(0.065)		
$log(gdp_i)$	-0.508 (0.780)		-0.512	(0.503)		
$log(gdp_i)$	1.051	(0.792)	-1.487	(1.020)		
log(distw _{ii})	-0.668****	(0.067)	-2.063****	(0.127)		
contig	-0.065	(0.111)	-0.450	(0.421)		
comlangof	0.348****	(0.092)	0.473*	(0.257)		
co/45	-0.455	(0.395)	-1.197	(0.782)		
comcur	0.909****	(0.112)	1.833**	(0.746)		
log(gdpcap _i)	0.824 (0.794)		0.310	(0.446)		
log(gdpcap _i)	-0.432 (0.799)		0.497	(0.766)		
R^2	0.92	221		0.6118		
Pairs	10	12	2 244			
Observations	18 0)31	40 301			
Mean of baii	17 539	mln \$	4	8 mln \$		
Median of <i>ba_{ii}</i>	418 n	nIn \$) mln \$		
Min of ba _{ii}	0 ml	n \$	0) mln \$		
Max of bajj	1 481 37	4 mln \$	39	39 695 mln \$		

Table 8: Results for different country groups

Significance at the 10%, 5%, 1% and 0.1% levels denoted by *, **, *** and ****.

Introduction Contributions of this paper Data Model Results Conclusions

For AEs, the marginal effect from *mpif* is always negative:

- For banks operating in AEs, the implementation of **a new MPM** is associated with **less cross-border lending** regardless of whether it is implemented in the origin or the destination country
- More MPMs in the destination country \rightarrow banks retreat from a more heavily regulated market
 - Why: To optimize the regulatory environment?
- But also: More MPMs in the origin country \rightarrow banks retreat from foreign markets
 - Why: Perhaps to reduce risks, or to be better positioned to comply with more regulation?
- A logical explanation: No opportunities for regulatory arbitrage The coverage of macroprudential regulation on average very good?

For EMDEs, the marginal effect from *mpif* is always positive:

- For banks operating in EMDEs, the implementation of a new MPM is associated with more cross-border lending regardless of whether it is implemented in the origin or the destination country
- More MPMs in the destination country \rightarrow banks increase lending to a more heavily regulated market
 - Why: To make use of a funding advantage emerging from gaps in regulation?
- But also: More MPMs in the origin country \rightarrow banks increase lending to foreign markets
 - Why: To escape the more stringent regulation at home?
- A logical explanation: Opportunities for regulatory arbitrage Perhaps there are on average more gaps in the regulatory coverage?

This does seem rather intuitive:

- **Different opportunities for regulatory arbitrage** emerges as a candidate for a logical explanation for the difference
- Plausible: the banking sectors, the regulatory framework and financial environment do differ in e.g. Netherlands and Thailand
- Further validation of this hypothesis would require a deeper dive into the use of MPMs, details of macroprudential regulation and characteristics of regulatory oversight
 - Also: There are differences in how many MPMs and what specific MPMs the different country groups tend to use
- A fertile ground for further research: Concentrate on AEs and EMDEs separately

Goal:

• Add to the knowledge on cross-border spillovers from macroprudential policy

Results:

- The effects of nationally implemented macroprudential policy instruments indeed leak across borders via international bank lending
- The spillover effects are negative for AEs and positive for EMDEs

Going forward:

• Is the difference really due to regulatory arbitrage, or is there something else at play?

Introduction	Contributions of this paper	Data	Model	Results	Conclusions

Thank you!

All comments and suggestions are warmly welcome: anni.norring@bof.fi

Introduction	Contributions of this paper	Data	Model	Results	Conclusions
	R	eference	S		

- Avdjiev, S., Koch, C., McGuire, P., von Peter, G., 2017." International prudential spillovers: a global perspective". International Journal of Central Banking, Vol. 13, No. S1.
- Brei, M., von Peter, G., 2018. "The distance effect in banking and trade". Journal of International Money and Finance, 81, 116-137.
- Buch, C., Goldberg, L., 2017. "Cross-border prudential policy spillovers: How much? How important? Evidence from the international banking research network". International Journal of Central Banking 13 (S1).
- Cerutti, E., Zhou, H., 2018b. "Cross-border banking and the circumvention of macroprudential and capital control measures." IMF Working Paper, WP/18/217.
- Cerutti, E., Claessens, S., Laeven, L., 2017. "The use and effectiveness of macroprudential policies: New evidence". Journal of Financial Stability, 28 (2017) 203-224.
- Cerrutti, E., Correa, R., Fiorentino, E., Segalla, E., 2017. "Changes in Prudential Policy Instruments A New Cross-Country Database". International Journal of Central Banking 13.
- Houston, J. F., Lin, C., Ma, Y., 2012. "Regulatory Arbitrage and International Bank Flows." Journal of Finance 67 (5): 1845-1895.
- Reinhardt, D. and Sowerbutts, R., 2015. "Regulatory arbitrage in action: evidence from banking flows and macroprudential policy". Bank of England Staff Working Paper No. 546.

Introduction	Contributions of this paper	Data	Model	Results	Conclusions

Additional slides

Motivation for studying the use and effectiveness of macroprudential regulation

- The field has been expanding rapidly, but much better understanding still needed on the use and effectiveness of macroprudential policy tools
- Multi-country studies have been limited by the lack of data, but this no longer entirely true:
 - Cerrutti et al. (2017a): The use and effectiveness of macroprudential policies: New evidence
 - Cerrutti et al. (2017b): Changes in the prudential policy instruments A new cross-country database
- My contribution: combine the data from Cerrutti et al. (2017a) with data on cross-border bilateral bank asset holdings

Motivation for studying the cross-border spillovers of macroprudential policies

- Evidence that the effects of macroprudential instruments occasionally spill over borders through international bank lending
 - Buch and Goldberg (2017): Cross-border regulatory spillovers: How much? How important? Evidence from the International Banking Research Network, & and the related papers
- This may reduce the effectiveness of national macroprudential policies due to regulatory arbitrage
 - Reinhardt and Sowerbutts (2015): Regulatory arbitrage in action: evidence from banking flows and macroprudential policy
- My contribution: a multi-country look at spillovers and the effects on bilateral bank asset holdings with a large set of countries

Motivation for using the gravity model of financial asset trade for international banking

- The gravity model has been a workhorse of international trade literature for decades (e.g. survey by Head and Mayer, 2014)
- The gravity model of trade in financial assets spread after Portes and Rey (2005) and IMF's CPIS-data
- The gravity model of international banking also produces *the classic gravity result*
 - Buch (2005): Distance and international banking
 - Brei and von Peter (2018): The distance effect in banking and trade
- My contribution: using the gavity model for studying the spillovers from macroprudential policy
 - Cerutti and Zhou (2018): Cross-border banking and the circumvention of macroprudential and capital control measures
 - Houston et al. (2012): Regulatory arbitrage and international bank flows

The gravity framework

- Theoretical base: the structural gravity formulation in international trade developed by Anderson and van Wincoop (2003)
- Frictions in the context of international banking: different transaction and information costs instead of transport costs
- The structural gravity equation:

$$A_{ij,t} = \alpha Y_{i,t} Y_{j,t} O_i D_j d_{ij}^{\theta} e^{\lambda' z_{ij,t}}$$
⁽²⁾

where $A_{ij,t}$ is the assets held by the origin country *i* in the destination country *j*, $Y_{i,t}$ and $Y_{j,t}$ are the economic masses, usually GDPs, O_i and D_j the time-invariant fixed effects, d_{ij} the bilateral distance, and $z_{ij,t}$ is a vector containing controls for trade or information frictions between the country pair, such as a shared language, border or currency.

Possible estimations methods

Bilateral data on international lending:

Large share of zero observations, heteroskedasticity and clustering

Some methods that have been used in similar set-ups:

- Panel fixed effects OLS with zero observations excluded (e.g. Portes and Rey, 2005) *basically the worst option*
- Panel probit with a dichotomous dependent variable (proposed by Drakos et al., 2014) *lots of lost information*
- A two-stage model such as the double-hurdle model (developed by Cragg, 1971, and Heckman, 1976) - *strict distributional assumptions & a computational nightmare*
- Poisson pseudo-maximum-likelihood (PPML) approach (proposed by Santos Silva and Tenreyro, 2006)

Poisson pseudo-maximum-likelihood (PPML) approach

- Santos Silva and Tenreyro show that log-linearizing and OLS leads to large upward bias in results due to inappropriate handling of zeros, heteroskedasticity and clustering
- PPML allows for estimating the gravity equations in their multiplicative form
- PPML is consistent with zeros, heteroskedasticity and clustering
- In trade literature the PPML is considered the most theory-consistent method of estimating a gravity equation use of the method in applications of gravity in financial asset trade still very limited