

2017 RiskLab/BoF/ESRB Conference on Systemic Risk Analytics Helsinki – 29th June 2017

The decline of solvency contagion risk

Marco Bardoscia, Paolo Barucca, Adam Brinley Codd, John Hill

Info

- Any views expressed are solely those of author(s) and so cannot be taken to represent those of the Bank of England or to state Bank of England policy.
- The Bank of England Staff Working Paper will be out soon: <u>http://www.bankofengland.co.uk/research/pages/workingpapers</u>
- Run solvency contagion on your own data! <u>https://github.com/marcobardoscia/neva</u>

Motivation

- One of the channels through which systemic risk spreads
- Classic critique: there have been few cascades of default
- Defaulting is not the only thing that matters: pre-default losses are important.
- "Roughly two thirds of the losses attributed to counterparty credit risk were due to CVA losses and only about one third were due to actual default."¹

¹Basel Committee, 2011. http://www.bis.org/press/p110601.htm

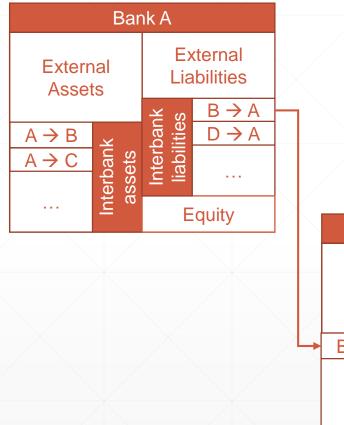
Short review

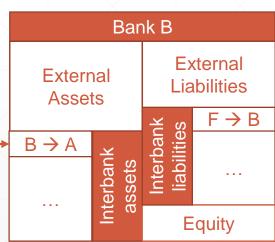
- Most empirical papers¹ are based on a simple mechanism: when a bank defaults its creditors lose the full amount of their exposures towards the defaulted bank, recovery rate is zero.
- Eisenberg and Noe²: recovery rate to claims towards defaulted banks is endogenously determined, and in general larger than zero.
- EN has been used in some empirical papers³.
- Some pre-crisis empirical papers⁴ look at the UK.

¹Furfine, JBCM 2003; Upper and Worms, EER 2004; Wells, BoE SWP 2004; Degryse et al, IJCB 2007; Cont et al, 2010; Mistrulli, JBF 2011.
²Eisenberg and Noe, MS 2001.
³Elsinger et al, MS 2006; Elsinger et al, IJCB 2006.
⁴Wells, BoE SWP 2004; Elsinger et al, IJCB 2006.

Short review

- Pre-default contagion can be though as an extension of structural credit models¹ to the case in which banks are tangled in complex network of contracts.
- There are two possible approaches:
 - Monte Carlo²
 - Neva³: Valuation functions
- We do not discuss the (much-debated) role of the topology of the underlying network⁴.


¹Merton, JF 1974; Black and Cox, JF 1976.
²Elsinger et al, MS 2006; Elsinger et al, IJCB 2006.
³Barucca et al, SSRN 2016.
⁴Acemoglu et al, AER 2015; Amini et al, Math. Fin. 2013; Bardoscia et al, Nature Comm. 2017.



Model

- Asset side:
 - External assets (e.g. loans)
 - Interbank assets
- Liability side:
 - External liabilities (e.g. deposits)
 - Interbank liabilities
 - Equity
- Balance sheet identity:

$$A_i^e + \sum_{j=1}^n A_{ij} = L_i^e + \sum_{j=1}^n L_{ij} + E_i$$

Valuation functions: Intuition

• We take assets at their market value, while liabilities do not change:

$$E_i(T) = A_i^e(T) + \sum_{j=1}^n A_{ij} \mathbb{V}_{ij}(E_j(T); \dots) - L_i^e - \sum_{j=1}^n L_{ij}$$

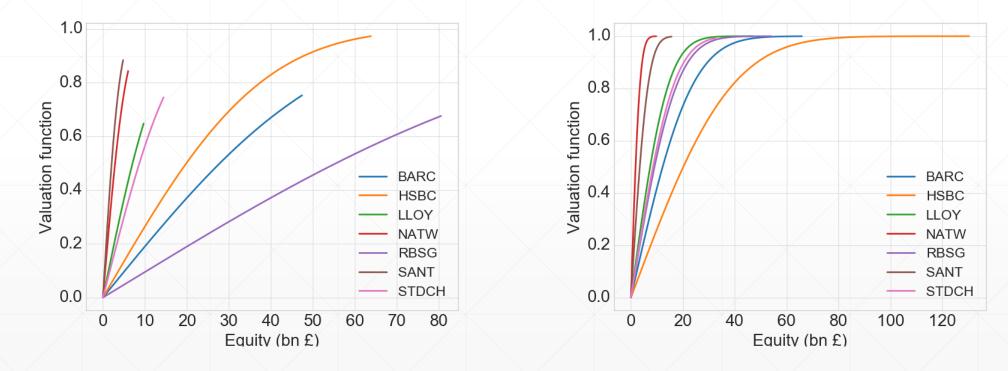
 The valuation function can be interpreted as a discount factor: if equal to one the asset is worth its face value; if equal to zero the asset is worth nothing. It will depend on the creditworthiness of the counterparty.

$$\mathbb{V}_{ij}(E_j(T);\ldots) = \begin{cases} 1 & \text{for } E_j(T) > 0\\ r_j(E_j(T);\ldots) & \text{for } E_j(T) \le 0 \end{cases}$$

• The recovery rate *r* is chosen to be consistent with the Eisenberg and Noe model.

Valuation functions: Intuition

 We now perform the valuation at time t < T. The arbitrage-free price of the assets is computed as an average over the risk-neutral measure:


$$E_{i}(t) = A_{i}^{e}(t) + \sum_{j=1}^{n} A_{ij} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{V}_{ij}(E_{j}(T); \ldots) | \mathbf{A}^{e}(t) \right] - L_{i}^{e} - \sum_{j=1}^{n} L_{ij}$$

 In our model banks can default at any time t before the maturity T, meaning that the average is made a la Black and Cox:

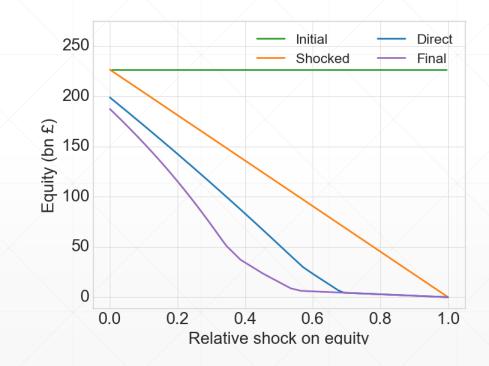
$$\mathbb{E}^{\mathbb{Q}}\left[\mathbb{V}_{ij}(E_j(T);\ldots)|\mathbf{A}^e(t)\right] = 1 - p_j^D(E_j(t)) + \rho \, p_j^D(E_j(t))$$

Valuation functions: Calibration

2008 (left) and 2015 (right), recovery rate = 0

Valuation functions: Results

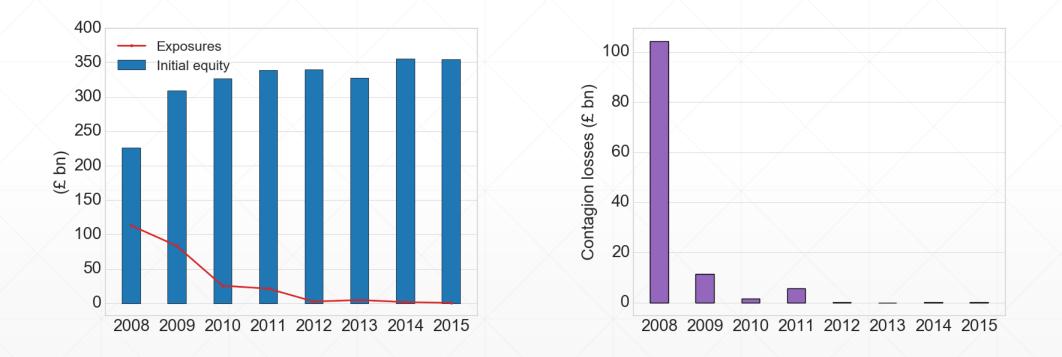
- In Barucca et al. (2016) (under mild assumptions) it is shown that the equations to compute the equities have a greatest solution, i.e. a solution that is simultaneously optimal for all banks.
- In order to compute the greatest solution one simply has to iterate the equations for equities using the book value of equities as a starting point.
- Computing the losses due to a shock amounts to:
 - 1. Using the post-shock equities as a starting point
 - 2. Finding the fixed-point of the equations for equities


Data

- We use real interbank exposures between banks part of the Bank of England's annual concurrent stress test:
 - 7 banks, which account for 80% of the regulated UK lending
 - 2008 2013: exposures larger than 10% of equity
 - 2014 2015: no threshold, more granular data
- When possible (2013 2015) we interpret the equity of our model as CET1, otherwise we use shareholders' equity for consistency.
- Volatilities are estimated from returns of banks' stock prices.

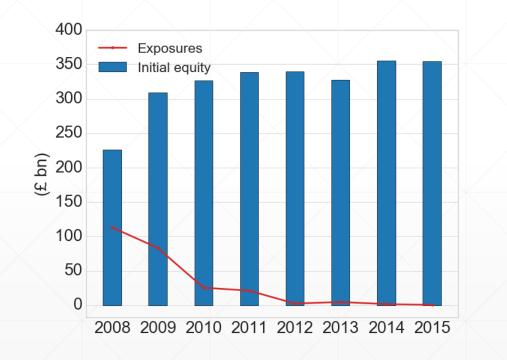
Simplified stress tests

- We run simplified stress tests. In the first "scenario" all banks suffer a homogeneous (relative) shock to their equity.
- Losses due to contagion (orange to purple) can be as large as the exogenous shock.
- Losses caused by direct exposures (orange to blue) can be a large as those caused by indirect exposures (blue to purple).

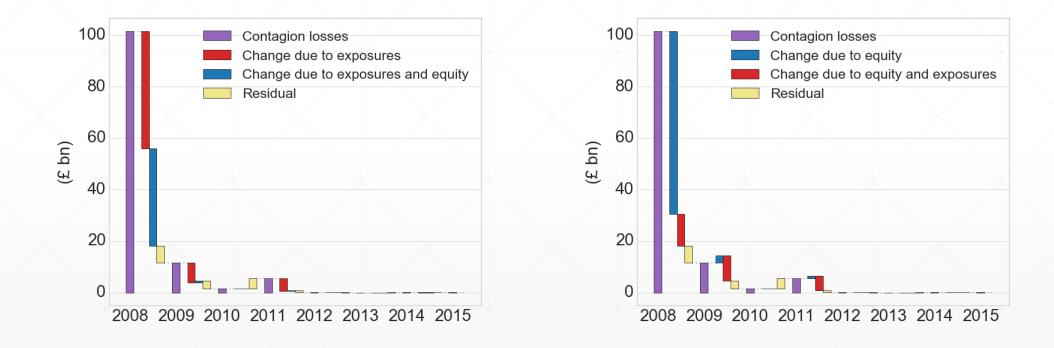


2008, recovery rate = 0

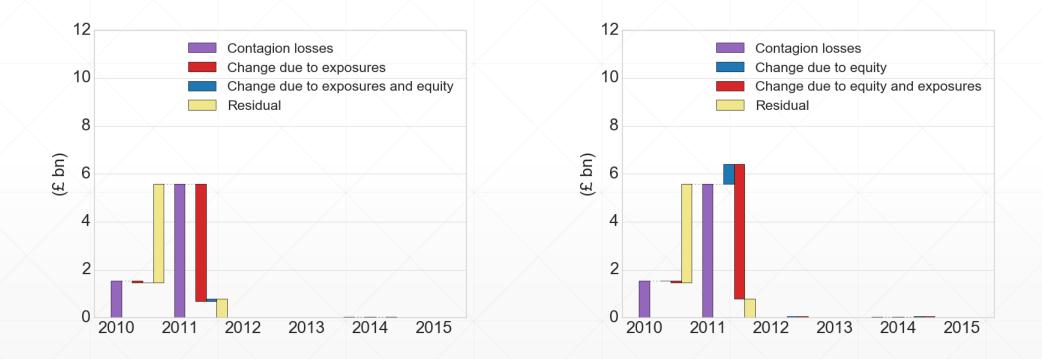
2017 RiskLab/BoF/ESRB Conference on Systemic Risk Analytics Helsinki – 29th June 2017


Contagion losses decline

Shock on equity = 40%, recovery rate = 0


Decomposing the fall

- In order to isolate the effect in changes of equity and exposures we build synthetic balance sheets:
 - 1. 2008 balance sheets with 2009 exposures,
 - 2. 2008 balance sheets with 2009 exposures and equity,
 - 3. Vice versa
- If results are consistent than we can be confident of the decomposition.

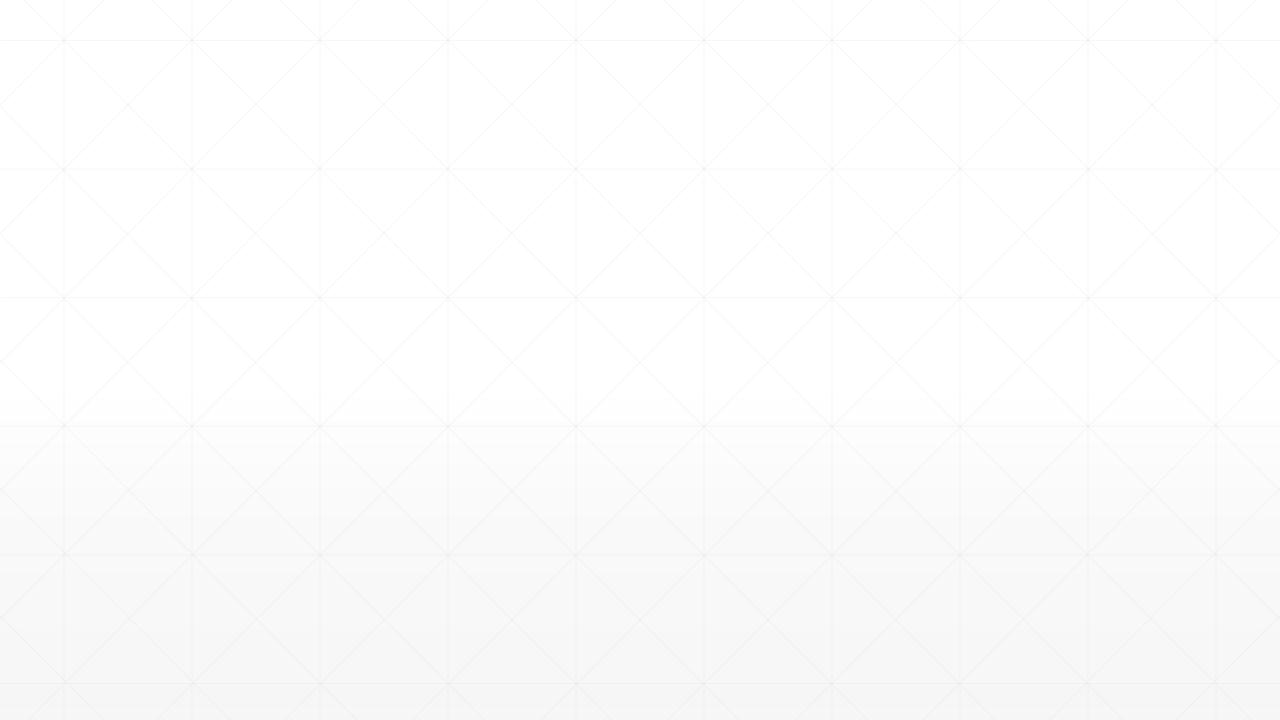

Decomposing the fall

Shock on equity = 40%, recovery rate = 0

Decomposing the fall: Zooming in

Shock on equity = 40%, recovery rate = 0

A more realistic scenario


- We also run a more realistic "scenario" in which our model is used as a macroprudential "overlay" to the Bank of England's annual concurrent stress test.
- In 2014, 2015, and 2016 we take the CET1 at the point in time in which banks are most vulnerable (in terms of the CET1 to risk-weighted assets ratio) as the postshock equity of our model.
- By setting the recovery rate equal to zero we get the following contagion losses:
 - 2013: £0bn
 - 2014: £0.2bn
 - 2015: £0.02bn

Conclusions

- The risk related to solvency contagion has shapely decreased from the peak of the crisis to today.
- We decompose the fall into two main drivers, equity and exposures.
- The distribution of equity matters: the contribution to contagion losses due to equity increases, even when capital in aggregate increases or stays constant.

