Harmonic distances, centralities and systemic stability in heterogeneous interbank networks

Gábor Fukker¹

2017 RiskLab/BoF/ESRB Conference on Systemic Risk Analytics, Helsinki

June 28, 2017

¹Magyar Nemzeti Bank (the central bank of Hungary) The views expressed in this presentation are those of the author and do not necessarily represent official positions of the MNB.

Outline

Introduction

Economic networks and contagion

Systemic importance measures supported by theory

Measurements Systemic importance Systemic stress indication References **Research question:** how do systemic importance measures perform in interbank networks in terms of direct contagion? **Fundamental papers in the topic:**

- Eisenberg and Noe (2001): solution of the payment equilibrium problem, fictitious default algorithm.
- Allen and Gale (2000), Freixas et al. (2000): more diversified interbank liabilities lead to a more resilient system to the default of any bank.

Most related works:

- Acemoglu et al. (2015a): vulnerability of financial networks and a new special metric of systemic importance
- Acemoglu et al. (2015b): general approach to economic networks, derivation of systemic importance measures
- Alter et al. (2015), Fink et al. (2015): empirical evidence on the usefulness of centrality measures

This work:

- presents numerical performance results for common and recently proposed systemic importance measures
- proposes a slight improvement for the harmonic distance of Acemoglu et al. (2015b), provides explicit analytical solution
- underpins that the usage of centrality measures is completely misleading in some situations: the structure of the network drives the performance of measures
- presents network measures as systemic stress indicators in a factor model approach, explained variance increases

Basic 'off-the-shelf' centrality measures

adjacency matrix: A, undirected, weighted matrix: W.

• degree:
$$d_i = \sum_{j=1}^n a_{i,j} = (\mathbf{A} \cdot \mathbf{1})_i$$

• weighted degree: $w_i = \sum_{j=1}^n w_{i,j} = (\mathbf{W} \cdot \mathbf{1})_i$

- ► closeness: c_i = 1/(max_j d(i,j)), where d(i, j) denotes distance between node i and j, i.e. the minimum length of paths between them.
- betweenness: the number of shortest paths that contain a given node *i*. Paths of length 1 are excluded.
- eigenvector centrality: $\mathbf{A} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$
- Bonacich centrality: b_i(α, β) = ∑_j α + β ⋅ a_{i,j} ⋅ b_j(α, β), leading to b(α, β) = α ⋅ (I − βA)⁻¹ ⋅ 1 = α ⋅ B ⋅ 1.

Theoretical connections between these measures

- degree: d_i is the number of steps (paths of length 1) from node i
- weighted degree: w_i is the number of weighted steps from node i
- betweenness: the number of shortest paths that contain a given node *i*. Paths of length 1 are excluded.
- Bonacich centrality: b(α, β) = α · ∑[∞]_{k=0} β^k A^k · 1: the expected number of paths from node *i*, probability of a step is β
- eigenvector centrality is a limit of Bonacich: $\lim_{\beta \to \left(\frac{1}{\lambda_1}\right) -} (1 \beta \lambda_1) \cdot \mathbf{b}(1, \beta) \propto \mathbf{v}.$

Adjacency eigenvector and Bonacich centrality seemed to be the best performing measures in empirical papers of Alter et al. (2015) and Fink et al. (2015).

Economic networks and contagion

Following Acemoglu et al. (2015a); Acemoglu et al. (2015b).

Generalized economic networks: An economy of *n* agents $\{1, 2, ..., n\}$. An agent *i* has a state x_i ($x_i \in \mathbb{R}, i \in N$) which can be output, investment or liabilities. For an *f* continuous and increasing function (interaction function) let

$$x_i = f\left(\sum_{j=1}^n w_{i,j} \cdot x_j + \varepsilon_i\right).$$

Equilibrium exists and is unique. The *macro state* of the economy is $y = g(h(x_1) + h(x_2) + ... + h(x_n))$.

(日) (同) (三) (三) (三) (○) (○)

Financial contagion: $\mathbf{x}^* = [\min{\{\mathbf{Q}\mathbf{x}^* + \mathbf{e}, \mathbf{y}\}}]^+$, $f(x) = [\min{\{x + e, y\}}]^+$. $\mathbf{Q} = \{q_{i,k}\}_{i,k=1}^n = \left\{\frac{y_{i,k}}{y_k}\right\}_{i,k=1}^n$. \mathbf{y} : vector of total liabilities, $q_{i,k} \cdot y_k = y_{i,k}, \mathbf{x}^*$: outgoing payments in equilibrium.

Taylor series expansion

- ▶ Bonacich centrality: How a shock to agent *p* affects the state of agent *i*: $\frac{\partial x_i}{\partial \varepsilon_p} \Big|_{\substack{\varepsilon = 0 \\ \varepsilon = 0}} = \alpha \cdot b_{i,p} \Rightarrow \mathbf{x} = \alpha \cdot \mathbf{B} \cdot \varepsilon.$ or the macro state: $\frac{\partial y}{\partial \varepsilon_p} = \sum_{i=1}^n b_{i,p}.$
- concentration centrality: If one takes the second order approximation: con_p = stdev(b_{1,p},..., b_{n,p})

Node *i* is said to be systemically more important than *j* if $y_{(i)} > y_{(j)}$, where $y_{(i)}$ denotes the macro state when *i* is hit with a negative shock. Precisely, in case of concave interaction function, institution *i* is systemically more important than *j* if $con_i > con_j$.

Harmonic distance

Assume that bank *j* defaults in the network.

In homogeneous networks (identical liabilities): Mean hitting time of a random walk on a graph from vertex *i* to *j* is the expected number of steps of a random walk from *i* until it reaches *j*: $h_{i,j} = \mathbf{E}_i(\tau_j) = 1 + \sum_{k \neq j} \left(\frac{y_{i,k}}{y}\right) \cdot h_{k,j}, h_{i,i} = 0.$

In heterogeneous networks: Scaling of banks: $\theta_i \cdot y = y_i$. The harmonic distance of bank *j* to bank *i* is given by $h_{i,j} = \theta_i + \sum_{k \neq j} \left(\frac{y_{i,k}}{y_k}\right) \cdot h_{k,j}, h_{i,i} = 0.$

Banks that are closer in harmonic distance to the defaulted bank are more vulnerable to distress.

(日) (同) (三) (三) (三) (○) (○)

Extended harmonic distance

A new extension of harmonic distance: different scaling for liquid assets and total liabilities.

 $h_{i,j} = e_i + \sum_{k \neq j} \left(\frac{y_{i,k}}{y_k} \right) \cdot h_{k,j}$, where e_i is the liquid assets of bank *i*.

Proposition

Suppose that bank j is hit with a negative shock $\varepsilon > \sum_{i=1}^{n} e_i$. Then

- 1. bank j defaults
- 2. all other banks also default if and only if $h_{i,j} < y_i$ for all *i*.

Definitions are recursive, how to calculate pairwise harmonic distances? In matrix form:

$$(\mathbf{I} - \mathbf{Q}) \cdot \mathbf{H} = \mathbf{E} - (\sum_{i=1}^{n} y_i) \cdot \mathbf{I}$$
, but $(\mathbf{I} - \mathbf{Q})$ is not invertible!

- ロ ト - 4 回 ト - 4 □ - 4

Extended harmonic distance

Proposition

The matrix $\mathbf{H} = \{h_{i,j}\}_{i,j=1}^{n}$ of pairwise size-adjusted harmonic distances is explicitly given by $\mathbf{H} = -\left(\sum_{i=1}^{n} e_{i}\right) \cdot \left(\mathbf{I} - \mathbf{Q} + \frac{1}{\sum_{i=1}^{n} e_{i}} \cdot \mathbf{E}\right)^{-1} + \mathbf{D}$, if and only if there is no non-borrowing node in the directed network.

 $(\mathbf{d}_i = \left[-\mathbf{v}_0 \cdot \frac{m_{i,i}}{v_{0,i}}\right]$ is the *i*th column of **D** and \mathbf{v}_0 is the eigenvector of $(\mathbf{I} - \mathbf{Q})$ corresponding to 0 eigenvalue.)

Straightforward systemic importance measure of j is then defined by $\sum_{i=1}^{n} h_{i,j}$.

How to compare all these measures?

Idea: the systemic importance of a bank in terms of direct contagion is the aggregate loss induced to the system by its default.

- 1. generate a huge number of networks with similar structure (following Soramäki and Cook (2013))
- 2. induce initial defaults one-by-one and compute the payment equilibrium \mathbf{x}^* (following Eisenberg and Noe (2001)) and aggregate losses = $\sum_{i=1}^{n} (y_i x_i^*)$
- 3. compute correlations of losses to centralities for all networks in a fixed parameter set

Artificial interbank networks

FOR $i = 1..n_0$ (add initial banks/nodes) SET $h_i = 1$ END FOR SET active = 0 (initial number of active banks in the network) SET $k = n_0 + 1$ (first new bank) WHILE active < nFOR l = 1..m (average number of payments per bank) SELECT random sender $i \in \{1, ..., k\}$ such that bank *i* has the probability $\frac{h_i}{\sum_i h_i}$ of SET $h_i = h_i + \alpha$ (update preferential attachment strength) SELECT random receiver $j \in \{1, ..., k\}$ such that bank j has the probability $\frac{n_j}{\sum i h_j}$ of being selected as recipient of the payment SET $h_i = h_i + \alpha$ (update preferential attachment strength) SET $y_{i,i} = y_{i,i} + 1$ (create payment/link) END FOR IF $k \leq n$ SET $h_k = 1$ AND SET k = k + 1 (create new bank/node) SET active as the number of nodes sending or receiving any payments END WHILE

- n: desired number of banks
- n₀: initial number of banks
- α : preferential attachment parameter
- m: number of edges attached at an iteration step
- h_i: 'strength' of node i
- edge weights are log-normally distributed proportionally to the minimum of in-degree and out-degree
- liquid assets are determined to have no contagion without the default of any banks: scaling with \boldsymbol{c}

Transformation of harmonic distances

Instead of
$$\sum_{i=1}^{n} h_{i,j}$$
, use $\frac{1}{\sum_{i=1}^{n} h_{i,j}}$.

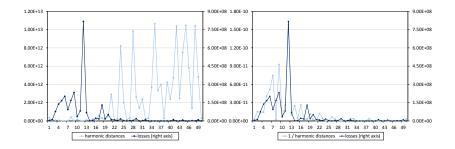


Table:
$$n = 50$$
, $n_0 = 5$, $m = 4$, $\alpha = 0.1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Correlations on 1000 networks for fixed parameters

harmonic distances:						
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.406	0.215	0.423	0.219	0.410	0.215
0.2	0.524	0.229	0.529	0.226	0.531	0.236
0.4	0.665	0.223	0.675	0.223	0.669	0.236
0.6	0.703	0.215	0.721	0.220	0.733	0.227
		exten	ded harmonic	distances:		
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.443	0.229	0.460	0.236	0.443	0.227
0.2	0.579	0.247	0.587	0.242	0.587	0.252
0.4	0.733	0.224	0.738	0.226	0.732	0.239
0.6	0.773	0.207	0.778	0.215	0.794	0.217
			weighted de	gree:		
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.783	0.063	0.793	0.070	0.796	0.067
0.2	0.805	0.071	0.816	0.073	0.817	0.072
0.4	0.839	0.076	0.848	0.077	0.846	0.082
0.6	0.849	0.079	0.861	0.080	0.866	0.080
			eigenvecto	or:		
с	1		2		3	
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.746	0.078	0.757	0.078	0.757	0.078
0.2	0.782	0.076	0.792	0.079	0.792	0.079
0.4	0.821	0.080	0.830	0.079	0.831	0.084
0.6	0.836	0.084	0.843	0.086	0.849	0.083

Table: Average correlation of centrality measures and losses generated by the failure of single nodes and standard deviation of correlations.

Correlations on 1000 networks for fixed parameters

Bonacich:						
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.397	0.188	0.380	0.187	0.375	0.187
0.2	0.466	0.212	0.450	0.192	0.451	0.198
0.4	0.538	0.219	0.511	0.208	0.505	0.214
0.6	0.505	0.214	0.509	0.225	0.503	0.221
			concentrati	ion:		
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.386	0.193	0.369	0.193	0.364	0.192
0.2	0.456	0.216	0.441	0.198	0.441	0.201
0.4	0.527	0.222	0.502	0.211	0.490	0.219
0.6	0.490	0.219	0.493	0.225	0.489	0.220
			closeness	5:		
с	1		2	2	3	3
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.431	0.095	0.422	0.096	0.425	0.092
0.2	0.403	0.100	0.402	0.101	0.401	0.102
0.4	0.364	0.117	0.355	0.119	0.355	0.120
0.6	0.316	0.128	0.314	0.130	0.315	0.128
			betweenne	ss:		
с	1		2		3	
α	avg.corr.	std.dev.	avg.corr.	std.dev.	avg.corr.	std.dev.
0.1	0.373	0.168	0.369	0.162	0.367	0.162
0.2	0.345	0.168	0.357	0.173	0.356	0.177
0.4	0.300	0.182	0.289	0.183	0.292	0.189
0.6	0.230	0.188	0.232	0.191	0.234	0.188

Table: Average correlation of centrality measures and losses generated by the failure of single nodes and standard deviation of correlations.

Correlations on 10000 networks when liquid assets are uniformly random, $c \in (1,3)$

harmonic distances			extended harmonic distances					weighted degree		
α	avg.corr.	std.dev		α	avg.corr.	std	.dev.	α	avg.corr.	std.dev.
0.1	0.416	0.217		0.1	0.450	0.	231	0.1	0.794	0.071
0.2	0.540	0.234		0.2	0.591	0.	248	0.2	0.819	0.075
0.4	0.666	0.232		0.4	0.724	0.	235	0.4	0.847	0.079
0.6	0.722	0.223		0.6	0.778	0.	219	0.6	0.864	0.080
eigenvector			Bonaci	ch			concentrat	ion		
α	avg.corr.	std.dev		α	avg.corr.	std	.dev.	α	avg.corr.	std.dev.
0.1	0.759	0.078		0.1	0.377	0.	185	0.1	0.365	0.190
0.2	0.796	0.078		0.2	0.455	0.	197	0.2	0.444	0.202
0.4	0.828	0.082		0.4	0.502	0.	214	0.4	0.491	0.217
0.6	0.846	0.083		0.6	0.508	0.	229	0.6	0.494	0.229
			closene	SS			betweenne	ess		
		α	avg.corr.	std.	dev.	α	avg.corr.	std.dev.		
		0.1	0.427	0.0	094	0.1	0.433	0.164		
		0.2	0.402	0.1	100	0.2	0.428	0.181		
		0.4	0.356	0.1	117	0.4	0.293	0.185		
		0.6	0.313	0.3	127	0.6	0.303	0.195		

Table: Average correlation of centrality measures compared to losses generated by the failure of single nodes, randomized liquid assets.

'Mean' behaviour

Centralities and losses are averaged for a given parameter set. If $c_{i,t}$ is a centrality of bank *i* in network *t*, then the average

harmonic distances exten			ended har	monic dist	tances		weighte	ed degree			
с	1	2	3	с	1	2	3	c	1	2	3
α	corr.	corr.	corr.	α	corr.	corr.	corr.	α	corr.	corr.	corr.
0.1	0.993	0.994	0.991	0.1	0.993	0.995	0.991	0.1	0.998	0.999	0.998
0.2	0.985	0.979	0.987	0.2	0.986	0.980	0.988	0.2	0.999	0.999	1.000
0.4	0.947	0.915	0.947	0.4	0.950	0.916	0.949	0.4	0.999	0.999	0.998
0.6	0.880	0.839	0.900	0.6	0.877	0.811	0.881	0.6	0.996	0.997	0.995
	eige	nvector			Bo	nacich			conce	ntration	
с	1	2	3	с	1	2	3	c	1	2	3
α	corr.	corr.	corr.	α	corr.	corr.	corr.	α	corr.	corr.	corr.
0.1	0.995	0.996	0.996	0.1	0.993	0.993	0.992	0.1	0.993	0.993	0.992
0.2	0.999	0.998	0.999	0.2	0.996	0.993	0.995	0.2	0.996	0.993	0.995
0.4	0.999	0.998	0.999	0.4	0.997	0.996	0.995	0.4	0.997	0.996	0.995
0.6	0.997	0.997	0.997	0.6	0.992	0.995	0.994	0.6	0.992	0.995	0.994
			close	eness			betw	eenness			
		c	1	2	3	с	1	2	3		
		α	corr.	corr.	corr.	α	corr.	corr.	corr.	_	
		0.1	0.864	0.847	0.853	0.1	0.841	0.819	0.817	_	
		0.2	0.800	0.798	0.793	0.2	0.726	0.726	0.724		
		0.4	0.719	0.710	0.714	0.4	0.603	0.586	0.600		

centrality of bank *i* will be $\sum_{t=1}^{T} \frac{c_{i,t}}{T}$.

0.6

0 651

Table: Correlation of averaged network measures and average induced losses.

0.6 0.511

0 477

0 512

0.662

0.635

Results on complete networks

1000 networks, edge weights are log-normally distributed as before. Betweeness is 0, closeness is constant by definition.

	c					
	1		2		3	
	avg.corr.	avg.corr. std.dev.		avg.corr. std.dev.		std.dev.
harmonic distances	0.067	0.151	0.024	0.148	0.020	0.141
extended harmonic distances	0.168	0.154	0.136	0.153	0.129	0.146
weighted degree	0.654	0.087	0.680	0.076	0.677	0.077
eigenvector	0.642	0.095	0.672	0.076	0.669	0.075
Bonacich	0.040	0.151	0.002	0.147	-0.001	0.142
concentration	-0.053	0.143	0.029	0.143	-0.029	0.150
closeness	0	0	0	0	0	0
betweenness	N/A	N/A	N/A	N/A	N/A	N/A

Table: Correlations for complete networks.

Even eigenvector and weighted degrees are poor.

Behaviour in a real financial network

Hungarian unsecured interbank lending network, weekly aggregations to obtain connected components.

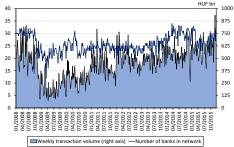


Figure: Number of banks and transaction volume in weekly networks

Mostly scale-free (Clauset et al. (2009)):

			<i>p</i> -value			γ	
	no. of networks	min	max	avg	min	max	avg
scale-free	327	0.100	0.993	0.477	1.886	3.344	2.906
non-scale-free	78	0.000	0.098	0.038	1.499	3.321	2.117

Behaviour in a real financial network

	avg.	std.dev.
Corr (WD, Eig)	0.704	0.076
Corr(1/HD, WD)	0.079	0.187
Corr (1/HD, Eig)	0.488	0.197
Corr (B, WD)	-0.041	0.142
Corr (B, Eig)	0.361	0.196
Corr (C, WD)	0.019	0.208
Corr (C, Eig)	0.189	0.217

Table: Average correlations and standard deviations across institutions.

Corr (WD, Eig)	0.881
Corr(1/HD, WD)	0.847
Corr(1/HD, Eig)	0.937
Corr (B, WD)	0.790
Corr (B, Eig)	0.922
Corr(C, WD)	0.259
Corr (C, Eig)	0.177

Table: Correlations on the averaged network, across institutions.

WD: weighted degrees, Eig: eigenvector centralities, 1/HD: the reciprocal of harmonic distances, B: Bonacich centralities, C: concentration centralities

Behaviour in a real financial network

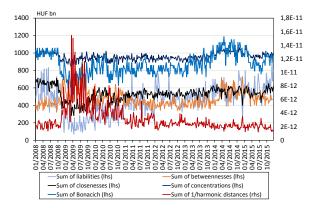


Figure: Centrality measures and the sum of all harmonic distances in the network

Which one is better for systemic stress indication? \Rightarrow static factor model of financial variables

Performances in a factor model

Hałaj and Kok (2013) suggested to include network measures in a systemic stress index like CISS (Holló et al. (2012)). I use the baseline model of Szendrei and Varga (2017).

government bond market	bond yields (3-month and 10-year) CDS (5-year bond)				
	BUBOR (3-month)				
interbank market	HUFONIA overnight rate				
	HUFONIA trading volume				
banking sector	bank PDs: from market price (Merton model)				
Danking Sector	network measure				
FX market	bid-ask spreads: HUF/EUR + HUF/USD				
FA market	volatilities: HUF/EUR, HUF/USD, HUF/GBP, HUF/CHF				
conital market	CMAX: BUX, BUMIX, CETOP20, DAX				
capital market	implied volatility: VDAX				

Table: Variables in the factor model (Szendrei and Varga, 2017).

 $\mathbf{y}_t = \lambda \cdot \mathbf{f}_t + \epsilon_t, \mathbf{f}_t \sim N(\mathbf{0}, \mathbf{I}_q), \ \epsilon_t \sim N(\mathbf{0}, \mathbf{\Sigma})$ are iid, λ is a $n \times q$ matrix of factor loadings. The number of variables is n = 19 and the number of factors is q = 4. Explained variance increases by approximately 2.7%.

Explanation of results

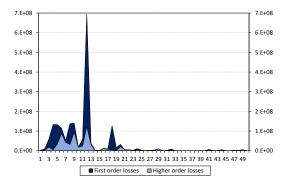


Figure: First order and higher order losses induced by the initial default of banks

 in a typical scale-free network, first order losses dominate higher order losses

- ▶ in complete networks, higher order losses are larger
- Inearizing the payment equilibrium is inappropriate
- the default of all banks is not likely

Conclusions

- application of well-known centrality measures in the literature might be misleading: the structure of the network is important
- even recently proposed measures like harmonic distances and concentration centrality couldn't outperform the above: different linearizations of the payment equilibrium equations are not useful
- extended harmonic distance performed slightly better than harmonic distance
- performances are very good on averaged networks: variance disappears

 network measures are useful in systemic stress indication according to a factor model

Thank you for your attention!

ACEMOGLU, D., A. OZDAGLAR AND A. TAHBAZ-SALEHI (2015a), 'Networks, shocks and systemic risk', *The Oxford Handbook on the Economics of Networks*,

ACEMOGLU, D., A. OZDAGLAR AND A. TAHBAZ-SALEHI (2015b), 'Systemic risk and stability in financial networks', *American Economic Review*, vol. 105 no. 2, pp. 564–608

ALLEN, F. AND D. GALE (2000), 'Financial contagion', *Journal* of *Political Economy*, vol. 108 no. 1, pp. 1–33

ALTER, A., B. CRAIG AND P. RAUPACH (2015), 'Centrality-Based Capital Allocations', *International Journal of Central Banking*, vol. 11 no. 3, pp. 329–379

CLAUSET, A., C. SHALIZI AND M. NEWMAN (2009), 'Power-law distributions in empirical data', *SIAM Review*, vol. 51 no. 4, pp. 661–703

EISENBERG, L. AND T. NOE (2001), 'Systemic risk in financial systems', *Management Science*, vol. 47 no. 2, pp. 236–249

FINK, K., U. KRÜGER, B. MELLER AND L.-H. WONG (2015), *The credit quality channel: Modeling contagion in the interbank market*, Discussion Paper No 38, Deutsche Bundesbank.

FREIXAS, X., B. M. PARIGI AND J. C. ROCHET (2000), 'Systemic risk, interbank relations, and liquidity provision by the central bank', *Journal of Money, Credit and Banking*, vol. 32 no. 3, pp. 611–638

HAŁAJ, G. AND C. KOK (2013), 'Assessing interbank contagion using simulated networks', *Computational Management Science*, vol. 10 no. 2-3, pp. 157–186

HOLLÓ, D., M. KREMER AND M. LO DUCA (2012), *CISS-a* composite indicator of systemic stress in the financial system, Working Paper series 1426, European Central Bank.

SORAMÄKI, K. AND S. COOK (2013), 'SinkRank: An algorithm for identifying systemically important banks in payment systems', *Economics*, vol. 7 no. 28, pp. 1 SZENDREI, T. AND K. VARGA (2017), FISS – A Factor Based Index of Systemic Stress in the Financial System, mimeo, Magyar Nemzeti Bank.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?