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Research question: how do systemic importance measures
perform in interbank networks in terms of direct contagion?
Fundamental papers in the topic:

I Eisenberg and Noe (2001): solution of the payment
equilibrium problem, fictitious default algorithm.

I Allen and Gale (2000), Freixas et al. (2000): more diversified
interbank liabilities lead to a more resilient system to the
default of any bank.

Most related works:

I Acemoglu et al. (2015a): vulnerability of financial networks
and a new special metric of systemic importance

I Acemoglu et al. (2015b): general approach to economic
networks, derivation of systemic importance measures

I Alter et al. (2015), Fink et al. (2015): empirical evidence on
the usefulness of centrality measures
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This work:

I presents numerical performance results for common and
recently proposed systemic importance measures

I proposes a slight improvement for the harmonic distance of
Acemoglu et al. (2015b), provides explicit analytical solution

I underpins that the usage of centrality measures is completely
misleading in some situations: the structure of the network
drives the performance of measures

I presents network measures as systemic stress indicators in a
factor model approach, explained variance increases
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Basic ’off-the-shelf’ centrality measures

adjacency matrix: A, undirected, weighted matrix: W.

I degree: di =
∑n

j=1 ai ,j = (A · 1)i
I weighted degree: wi =

∑n
j=1 wi ,j = (W · 1)i

I closeness: ci = 1
maxj d(i ,j)

, where d(i , j) denotes distance

between node i and j , i.e. the minimum length of paths
between them.

I betweenness: the number of shortest paths that contain a
given node i . Paths of length 1 are excluded.

I eigenvector centrality: A · v = λ · v
I Bonacich centrality: bi (α, β) =

∑
j α + β · ai ,j · bj(α, β),

leading to b(α, β) = α · (I− βA)−1 · 1 = α · B · 1.
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Theoretical connections between these measures

I degree: di is the number of steps (paths of length 1) from
node i

I weighted degree: wi is the number of weighted steps from
node i

I betweenness: the number of shortest paths that contain a
given node i . Paths of length 1 are excluded.

I Bonacich centrality: b(α, β) = α ·
∑∞

k=0 β
kAk · 1: the

expected number of paths from node i , probability of a step is
β

I eigenvector centrality is a limit of Bonacich:
lim

β→
(

1
λ1

)
−(1 − βλ1) · b(1, β) ∝ v.

Adjacency eigenvector and Bonacich centrality seemed to be the
best performing measures in empirical papers of Alter et al. (2015)
and Fink et al. (2015).
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Economic networks and contagion

Following Acemoglu et al. (2015a); Acemoglu et al. (2015b).

Generalized economic networks: An economy of n agents
{1, 2, . . . , n}. An agent i has a state xi (xi ∈ R, i ∈ N) which can
be output, investment or liabilities. For an f continuous and
increasing function (interaction function) let

xi = f
(∑n

j=1 wi ,j · xj + εi

)
.

Equilibrium exists and is unique. The macro state of the economy
is y = g (h(x1) + h(x2) + . . . + h(xn)).

Financial contagion: x∗ = [min{Qx∗ + e, y}]+,
f (x) = [min{x + e, y}]+.

Q = {qi ,k}ni ,k=1 =
{

yi,k
yk

}n

i ,k=1
. y : vector of total liabilities,

qi ,k · yk = yi ,k , x∗ : outgoing payments in equilibrium.
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Taylor series expansion

I Bonacich centrality: How a shock to agent p affects the

state of agent i : ∂xi
∂εp

∣∣∣∣
ε=0

= α · bi ,p ⇒ x = α · B · ε.

or the macro state: ∂y
∂εp

=
∑n

i=1 bi ,p.

I concentration centrality: If one takes the second order
approximation: conp = stdev(b1,p, . . . , bn,p)

Node i is said to be systemically more important than j if
y(i) > y(j), where y(i) denotes the macro state when i is hit
with a negative shock. Precisely, in case of concave
interaction function, institution i is systemically more
important than j if coni > conj .
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Harmonic distance

Assume that bank j defaults in the network.
In homogeneous networks (identical liabilities): Mean hitting
time of a random walk on a graph from vertex i to j is the
expected number of steps of a random walk from i until it reaches

j : hi ,j = Ei (τj) = 1 +
∑

k ̸=j

(
yi,k
y

)
· hk,j , hi ,i = 0.

In heterogeneous networks: Scaling of banks: θi · y = yi . The
harmonic distance of bank j to bank i is given by

hi ,j = θi +
∑

k ̸=j

(
yi,k
yk

)
· hk,j , hi ,i = 0.

Banks that are closer in harmonic distance to the defaulted bank
are more vulnerable to distress.
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Extended harmonic distance

A new extension of harmonic distance: different scaling for liquid
assets and total liabilities.
hi ,j = ei +

∑
k ̸=j

(
yi,k
yk

)
· hk,j , where ei is the liquid assets of bank i .

Proposition

Suppose that bank j is hit with a negative shock ε >
∑n

i=1 ei .
Then

1. bank j defaults

2. all other banks also default if and only if hi ,j < yi for all i .

Definitions are recursive, how to calculate pairwise harmonic
distances? In matrix form:

(I−Q) ·H = E− (
∑n

i=1 yi ) · I, but (I−Q) is not invertible!
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Extended harmonic distance

Proposition

The matrix H = {hi ,j}ni ,j=1 of pairwise size-adjusted harmonic
distances is explicitly given by

H = − (
∑n

i=1 ei ) ·
(
I−Q + 1∑n

i=1 ei
· E

)−1
+ D, if and only if there

is no non-borrowing node in the directed network.

(di =
[
−v0 ·

mi,i

v0,i

]
is the ith column of D and v0 is the eigenvector

of (I−Q) corresponding to 0 eigenvalue.)

Straightforward systemic importance measure of j is then defined
by

∑n
i=1 hi ,j .
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How to compare all these measures?

Idea: the systemic importance of a bank in terms of direct
contagion is the aggregate loss induced to the system by its
default.

1. generate a huge number of networks with similar structure
(following Soramäki and Cook (2013))

2. induce initial defaults one-by-one and compute the payment
equilibrium x∗ (following Eisenberg and Noe (2001)) and
aggregate losses =

∑n
i=1(yi − x∗i )

3. compute correlations of losses to centralities for all networks
in a fixed parameter set
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Artificial interbank networks
FOR i = 1..n0 (add initial banks/nodes)

SET hi = 1
END FOR

SET active = 0 (initial number of active banks in the network)
SET k = n0 + 1 (first new bank)

WHILE active < n
FOR l = 1..m (average number of payments per bank)

SELECT random sender i ∈ {1, . . . , k} such that bank i has the probability
hi∑
l hl

of

SET hi = hi + α (update preferential attachment strength)

SELECT random receiver j ∈ {1, . . . , k} such that bank j has the probability
hj∑
l hl

of being selected as recipient of the payment
SET hj = hj + α (update preferential attachment strength)
SET yj,i = yj,i + 1 (create payment/link)

END FOR

IF k ≤ n SET hk = 1 AND SET k = k + 1 (create new bank/node)
SET active as the number of nodes sending or receiving any payments

END WHILE

- n: desired number of banks
- n0: initial number of banks
- α: preferential attachment parameter

- m: number of edges attached at an iteration step

- hi : ’strength’ of node i

- edge weights are log-normally distributed proportionally to the minimum of
in-degree and out-degree

- liquid assets are determined to have no contagion without the default of any
banks: scaling with c
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Transformation of harmonic distances

Instead of
∑n

i=1 hi ,j , use 1∑n
i=1 hi,j

.
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Correlations on 1000 networks for fixed parameters
harmonic distances:

c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.406 0.215 0.423 0.219 0.410 0.215
0.2 0.524 0.229 0.529 0.226 0.531 0.236
0.4 0.665 0.223 0.675 0.223 0.669 0.236
0.6 0.703 0.215 0.721 0.220 0.733 0.227

extended harmonic distances:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.443 0.229 0.460 0.236 0.443 0.227
0.2 0.579 0.247 0.587 0.242 0.587 0.252
0.4 0.733 0.224 0.738 0.226 0.732 0.239
0.6 0.773 0.207 0.778 0.215 0.794 0.217

weighted degree:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.783 0.063 0.793 0.070 0.796 0.067
0.2 0.805 0.071 0.816 0.073 0.817 0.072
0.4 0.839 0.076 0.848 0.077 0.846 0.082
0.6 0.849 0.079 0.861 0.080 0.866 0.080

eigenvector:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.746 0.078 0.757 0.078 0.757 0.078
0.2 0.782 0.076 0.792 0.079 0.792 0.079
0.4 0.821 0.080 0.830 0.079 0.831 0.084
0.6 0.836 0.084 0.843 0.086 0.849 0.083

Table: Average correlation of centrality measures and losses generated by
the failure of single nodes and standard deviation of correlations.
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Correlations on 1000 networks for fixed parameters
Bonacich:

c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.397 0.188 0.380 0.187 0.375 0.187
0.2 0.466 0.212 0.450 0.192 0.451 0.198
0.4 0.538 0.219 0.511 0.208 0.505 0.214
0.6 0.505 0.214 0.509 0.225 0.503 0.221

concentration:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.386 0.193 0.369 0.193 0.364 0.192
0.2 0.456 0.216 0.441 0.198 0.441 0.201
0.4 0.527 0.222 0.502 0.211 0.490 0.219
0.6 0.490 0.219 0.493 0.225 0.489 0.220

closeness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.431 0.095 0.422 0.096 0.425 0.092
0.2 0.403 0.100 0.402 0.101 0.401 0.102
0.4 0.364 0.117 0.355 0.119 0.355 0.120
0.6 0.316 0.128 0.314 0.130 0.315 0.128

betweenness:
c 1 2 3

α avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.

0.1 0.373 0.168 0.369 0.162 0.367 0.162
0.2 0.345 0.168 0.357 0.173 0.356 0.177
0.4 0.300 0.182 0.289 0.183 0.292 0.189
0.6 0.230 0.188 0.232 0.191 0.234 0.188

Table: Average correlation of centrality measures and losses generated by
the failure of single nodes and standard deviation of correlations.
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Correlations on 10000 networks when liquid assets are
uniformly random, c ∈ (1, 3)

harmonic distances
α avg.corr. std.dev.

0.1 0.416 0.217
0.2 0.540 0.234
0.4 0.666 0.232
0.6 0.722 0.223

extended harmonic distances
α avg.corr. std.dev.

0.1 0.450 0.231
0.2 0.591 0.248
0.4 0.724 0.235
0.6 0.778 0.219

weighted degree
α avg.corr. std.dev.

0.1 0.794 0.071
0.2 0.819 0.075
0.4 0.847 0.079
0.6 0.864 0.080

eigenvector
α avg.corr. std.dev.

0.1 0.759 0.078
0.2 0.796 0.078
0.4 0.828 0.082
0.6 0.846 0.083

Bonacich
α avg.corr. std.dev.

0.1 0.377 0.185
0.2 0.455 0.197
0.4 0.502 0.214
0.6 0.508 0.229

concentration
α avg.corr. std.dev.

0.1 0.365 0.190
0.2 0.444 0.202
0.4 0.491 0.217
0.6 0.494 0.229

closeness
α avg.corr. std.dev.

0.1 0.427 0.094
0.2 0.402 0.100
0.4 0.356 0.117
0.6 0.313 0.127

betweenness
α avg.corr. std.dev.

0.1 0.433 0.164
0.2 0.428 0.181
0.4 0.293 0.185
0.6 0.303 0.195

Table: Average correlation of centrality measures compared to losses
generated by the failure of single nodes, randomized liquid assets.
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’Mean’ behaviour
Centralities and losses are averaged for a given parameter set. If
ci ,t is a centrality of bank i in network t, then the average

centrality of bank i will be
∑T

t=1
ci,t
T .

harmonic distances
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.994 0.991
0.2 0.985 0.979 0.987
0.4 0.947 0.915 0.947
0.6 0.880 0.839 0.900

extended harmonic distances
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.995 0.991
0.2 0.986 0.980 0.988
0.4 0.950 0.916 0.949
0.6 0.877 0.811 0.881

weighted degree
c 1 2 3

α corr. corr. corr.

0.1 0.998 0.999 0.998
0.2 0.999 0.999 1.000
0.4 0.999 0.999 0.998
0.6 0.996 0.997 0.995

eigenvector
c 1 2 3

α corr. corr. corr.

0.1 0.995 0.996 0.996
0.2 0.999 0.998 0.999
0.4 0.999 0.998 0.999
0.6 0.997 0.997 0.997

Bonacich
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.993 0.992
0.2 0.996 0.993 0.995
0.4 0.997 0.996 0.995
0.6 0.992 0.995 0.994

concentration
c 1 2 3

α corr. corr. corr.

0.1 0.993 0.993 0.992
0.2 0.996 0.993 0.995
0.4 0.997 0.996 0.995
0.6 0.992 0.995 0.994

closeness
c 1 2 3

α corr. corr. corr.

0.1 0.864 0.847 0.853
0.2 0.800 0.798 0.793
0.4 0.719 0.710 0.714
0.6 0.651 0.635 0.662

betweenness
c 1 2 3

α corr. corr. corr.

0.1 0.841 0.819 0.817
0.2 0.726 0.726 0.724
0.4 0.603 0.586 0.600
0.6 0.511 0.477 0.512

Table: Correlation of averaged network measures and average induced
losses.
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Results on complete networks

1000 networks, edge weights are log-normally distributed as before.
Betweeness is 0, closeness is constant by definition.

c
1 2 3

avg.corr. std.dev. avg.corr. std.dev. avg.corr. std.dev.
harmonic distances 0.067 0.151 0.024 0.148 0.020 0.141
extended harmonic distances 0.168 0.154 0.136 0.153 0.129 0.146
weighted degree 0.654 0.087 0.680 0.076 0.677 0.077
eigenvector 0.642 0.095 0.672 0.076 0.669 0.075
Bonacich 0.040 0.151 0.002 0.147 -0.001 0.142
concentration -0.053 0.143 0.029 0.143 -0.029 0.150
closeness 0 0 0 0 0 0
betweenness N/A N/A N/A N/A N/A N/A

Table: Correlations for complete networks.

Even eigenvector and weighted degrees are poor.
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Behaviour in a real financial network
Hungarian unsecured interbank lending network, weekly
aggregations to obtain connected components.
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Figure: Number of banks and transaction volume in weekly networks

Mostly scale-free (Clauset et al. (2009)):

p-value γ
no. of networks min max avg min max avg

scale-free 327 0.100 0.993 0.477 1.886 3.344 2.906
non-scale-free 78 0.000 0.098 0.038 1.499 3.321 2.117

Table: Accepted (scale-free) and rejected (non-scale-free) networks’
p-values and γ parameters of degree distributions
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Behaviour in a real financial network
avg. std.dev.

Corr (WD, Eig) 0.704 0.076
Corr (1/HD,WD) 0.079 0.187
Corr (1/HD, Eig) 0.488 0.197
Corr (B,WD) -0.041 0.142
Corr (B, Eig) 0.361 0.196
Corr (C ,WD) 0.019 0.208
Corr (C , Eig) 0.189 0.217

Table: Average correlations and standard deviations across institutions.

Corr (WD, Eig) 0.881
Corr (1/HD,WD) 0.847
Corr (1/HD, Eig) 0.937
Corr (B,WD) 0.790
Corr (B, Eig) 0.922
Corr (C ,WD) 0.259
Corr (C , Eig) 0.177

Table: Correlations on the averaged network, across institutions.

WD: weighted degrees, Eig: eigenvector centralities, 1/HD: the reciprocal

of harmonic distances, B: Bonacich centralities, C: concentration

centralities
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Behaviour in a real financial network
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Figure: Centrality measures and the sum of all harmonic distances in the
network

Which one is better for systemic stress indication? ⇒ static factor
model of financial variables
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Performances in a factor model
Ha laj and Kok (2013) suggested to include network measures in a
systemic stress index like CISS (Holló et al. (2012)). I use the baseline
model of Szendrei and Varga (2017).

government bond market
bond yields (3-month and 10-year)

CDS (5-year bond)

interbank market
BUBOR (3-month)

HUFONIA overnight rate
HUFONIA trading volume

banking sector
bank PDs: from market price (Merton model)

network measure

FX market
bid-ask spreads: HUF/EUR + HUF/USD

volatilities: HUF/EUR, HUF/USD, HUF/GBP, HUF/CHF

capital market
CMAX: BUX, BUMIX, CETOP20, DAX

implied volatility: VDAX

Table: Variables in the factor model (Szendrei and Varga, 2017).

yt = λ · ft + ϵt , ft ∼ N(0, Iq), ϵt ∼ N(0,Σ) are iid, λ is a n × q matrix of

factor loadings. The number of variables is n = 19 and the number of

factors is q = 4. Explained variance increases by approximately

2.7%.
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Explanation of results
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Figure: First order and higher order losses induced by the initial default
of banks

I in a typical scale-free network, first order losses dominate
higher order losses

I in complete networks, higher order losses are larger
I linearizing the payment equilibrium is inappropriate
I the default of all banks is not likely
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Conclusions

I application of well-known centrality measures in the literature
might be misleading: the structure of the network is important

I even recently proposed measures like harmonic distances and
concentration centrality couldn’t outperform the above:
different linearizations of the payment equilibrium equations
are not useful

I extended harmonic distance performed slightly better than
harmonic distance

I performances are very good on averaged networks: variance
disappears

I network measures are useful in systemic stress indication
according to a factor model
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Thank you for your attention!
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