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1 Introduction

We present a new source of financial fragility: the geography of deposits of multi-market

banks. Banks provide liquidity to the economy by funding illiquid assets with liquid liabili-

ties. Deposits are a salient source of liquid liabilities – the focus of this paper.1 Multi-market

banks are an essential part of the modern economy, connecting geographically distant areas

economically. Multi-market banks collect deposits from branches across geographies and al-

locate funds towards lending activity. As bank loans in one area may be financed by deposits

from another, local shocks to bank deposits can transmit to distant areas. This problem is

amplified when bank deposits are geographically concentrated. We posit that the geography

of banking assets and liabilities can make the economy, on aggregate, more susceptible to

idiosyncratic shocks. This paper empirically tests this proposition and documents that local

exogenous shocks in areas where bank deposits are geographically concentrated can account

for aggregate fluctuations. Hence, we propose and test a new channel for the transmission

of idiosyncratic shocks, the deposits channel.

The objective of this paper is to study the mechanism through which the geography

of bank deposits and idiosyncratic shocks explain aggregate fluctuations. We achieve this

objective through our four key findings. First, we introduce a new fact on the geographic con-

centration of bank deposits. Bank deposits are geographically concentrated within a bank,

as at least 30% of deposits for a given bank are concentrated in a single county. The geo-

graphic concentration of deposits is widespread, across banks, including the Big Four banks.

This result differs from Drechsler, Savov and Schnabl (2017) which documents the within-

county concentration of deposits. Second, we construct novel bank deposit shocks using

the granular instrumental variable methodology of Gabaix and Koijen (2020), by combin-

ing the within-bank geographic concentration of deposits with local natural disaster-induced

property damages. This methodology rests on two findings: (1) natural disasters result in

a permanent decline in deposits, and (2) banks have different exposures to natural disas-

ters depending on the geographic distribution of their deposits. Third, we show that these

deposit shocks can explain aggregate economic growth. The transmission of local disas-

1Shocks to deposits can destabilize bank funding and lower their supply of long-term financing. See the seminal work
of Khwaja and Mian (2008) and recent work of Choudhary and Limodio (2021).
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ter shocks to aggregate fluctuations occurs through the deposits channel, which negatively

affect bank lending. Fourth, we demonstrate that financial frictions such as regulatory con-

straints, informational advantages, and borrower constraints are critical to the transmission

mechanism.

Our results are important for two reasons. First, the geographic concentration of bank

deposits provides an explanation of how idiosyncratic shocks can aggregate to account for

fluctuations in overall economic activity. Hence, this paper presents a new and an unex-

plored source of financial fragility – the geography of bank deposits – that can inform design

of optimal stabilization policies. Second, we highlight the importance of frictions in the ag-

gregation of idiosyncratic shocks, as the granular structure, in and of itself, is insufficient in

generating aggregate effects. Overall, our results suggest that while the granular structure is

important for explaining the origins of aggregate fluctuations, financial frictions are critical

for the transmission of idiosyncratic shocks.

Our findings are also important from a policy standpoint. Secretary of the Trea-

sury, Janet L. Yellen, stated that “climate change is an emerging and increasing threat to

America’s financial system that requires action.” The Financial Stability Oversight Council

(FSOC) recently identified climate change as a threat to financial stability and has made

several concrete recommendations to assess climate-related risks (The Financial Stability

Oversight Council (2021)). The Securities and Exchange Commission (SEC) is evaluating

the regulation of climate change disclosures, which may require publicly traded companies,

including the largest banks, to disclose information on climate change risks, impacts, and

opportunities (Lee (2021)). This paper demonstrates how extreme disasters, due to climate

change, can propagate across the financial system through banking networks, especially when

bank deposits are geographically concentrated.

We present a simple model of optimal bank allocation to illustrate how financial fric-

tions affect a multi-market bank’s mediation of shocks and allocation of funds through in-

ternal capital markets. In the model, banks earn region-specific returns from loans and pay

region-specific interest on deposits. Banks vary in their ability to procure information on

their investments across branches. The model demonstrates how negative shocks to deposits

in one region can lead to a contraction in credit in unaffected regions. Furthermore, these
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effects are more pronounced when banks operate closer to their financial constraints and

when they lack region-specific informational advantages.

We develop a methodology of constructing novel bank deposit shocks by combining

the within-bank geographic concentration of deposits with local natural disaster-induced

property damages. We first measure the local disaster shocks using property damage per

capita at the county level. We then measure the fraction of a bank’s deposits raised across

counties, referred to as the “within-bank geographic concentration of deposits.” Banks’

exposure to the county-level disaster shocks varies by the share of deposits raised in each

county. Hence, we construct each bank’s deposit shocks by weighting the county-level disaster

shocks by the within-bank geographic concentration of deposits. We argue that the natural

disasters are associated with deposit withdrawals. Specifically, a one standard deviation

disaster shock, equivalent to a property damage per capita of $540, is associated with an

immediate decline of 0.07-0.11 percentage points in deposit growth in each county. The

strong negative effect of disaster shocks on deposit growth is persistent even ten years after

the shock. As disasters destroy capital, households may be forced to consume from their

savings, producing a decline in savings. Importantly, we verify that these bank specific

shocks lack temporal dynamics, exhibit low correlation across banks, and cannot be reliably

predicted by bank characteristics. However, these bank specific shocks can explain deposit

growth and growth in liquidity creation at the bank-level. Hence, these shocks measure the

aggregate sensitivity of a bank’s deposits to local natural disasters.

We test the deposits channel of aggregate fluctuations. We follow Gabaix and Koijen

(2020) to construct granular deposit shocks. This is done by aggregating the bank-level

deposit shocks by weighting each bank’s deposit shock by the lending share of the bank in

the economy, and subtracting it from the equal weighted natural disaster-induced property

damages per capita. We validate the relevance of our shocks through a narrative analysis

in which we connect our shocks to major natural disasters. We further document a strong

positive relationship between the insurance payout and granular deposit shocks. Next, we

show that our granular deposit shocks can explain aggregate fluctuations. These granular

shocks can explain aggregate deposit growth and are unlikely to be related with the pre-

existing innovations in the economic growth process. Hence, the granular deposit shocks
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are a suitable candidate to quantify the effect of deposit shocks on economic growth – the

deposits channel of aggregate fluctuations.

We show that a one standard deviation granular deposit shock reduces economic growth

by 0.05-0.07 percentage points, and can explain 3.30% of variation in economic growth. The

explanatory power of our granular deposit shocks is comparable to other macroeconomic

shocks such as oil shocks, monetary policy surprises, uncertainty policy shocks, term spread,

government expenditure shocks, and the granular residual from Gabaix (2011). We show

that the effect of disasters through deposits is distinct from the direct effect of disasters.

The granular deposit shocks have an immediate effect on economic growth, waning over

the course of several quarters. Using a two stage least square estimation strategy, we find

that a 1% decline in deposit growth is associated with a decline of 0.85 percentage points

in economic growth. Overall, these findings indicate that the deposit elasticity of economic

growth is substantial, and corroborates that the deposits channel can significantly influence

aggregate fluctuations.

We study the underlying mechanism through which deposit shocks can affect aggregate

economic growth. Using micro-data on small business lending and mortgage lending, we

document a negative relation between bank deposit shocks and lending activity – the key

mechanism through which shocks to banks affect economic growth. We focus on small

business lending because of its relevance to the economy and its reliance on stable deposit

funding from banks.

We identify the effect on lending, using a within-county estimator, exploiting variation

in deposit shocks across banks within a county-year observation. The underlying identifying

assumption is that banks face identical investment opportunities or loan demand within a

county. A weaker version of this identifying assumption is that any friction that creates a

wedge between available investment opportunities to different banks within a county is unre-

lated to the idiosyncratic disaster shocks. Further, we control for county × bank fixed effects

to control for the time-invariant importance of a bank within a county. This identification

strategy allows us to identify the effect of bank deposit shocks, originating from county-level

disaster shocks, on lending activity in other regions. Our emphasis on multi-market banks

allows us to measure the regional spillovers from deposit to lending activity across disparate
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geographic regions.2 Using this estimator, we find that a one standard deviation deposit

shock is associated with a decline of 1.09-1.85 percentage points in small business lending

growth. The negative effect of deposit shocks on small business lending is immediate and

increases gradually in magnitude for up to five years after the initial shock, decreasing there-

after. Moreover, we show that the contraction in lending following deposit shocks is driven

by large banks. This is important because a necessary condition for idiosyncratic shocks to

explain aggregate fluctuations is that the idiosyncratic shocks must affect the behavior of

the large players in the market (Gabaix (2011)).

We show that financial frictions such as bank capital constraints, informational advan-

tages, and borrower constraints are crucial for the transmission of deposit shocks. These tests

are motivated by recent advances in the theoretical literature which highlight the importance

of financial frictions, in addition to the granular structure, in explaining the granular origins

of aggregate fluctuations (Pasten, Schoenle and Weber (2017); Khorrami (2021)). Addition-

ally, the cross-sectional variation in lending, across counties, by the same bank provides for

a stronger identification claim.

First, we examine the role of bank capital constraints. We find that banks with a

lower Tier 1 Capital ratio cut lending more following deposit shocks, relative to banks with

a higher Tier 1 Capital ratio. This indicates that the decline in lending is driven by banks

that are constrained by regulatory capital. Second, we examine the role of informational

advantages. Using the presence of a physical branch and high lending activity as proxies

of greater informational advantages, we show that banks cut lending more in areas where

they lack informational advantages. Third, we examine the role of borrower constraints. We

show that the contraction in lending is concentrated among constrained firms which are more

dependent on banks as a source of external financing. Hence, our results provide empirical

evidence in support of the theory that financial frictions are critical in explaining granular

origins of aggregate fluctuations.

We also document similar negative effects of deposit shocks on mortgage lending.

Specifically, a one standard deviation deposit shock is associated with declines in lending

2The activities of small banks are geographically confined, making identification challenging due to inability to
separate the demand and supply channels of bank lending in disaster-stricken areas and concerns of reverse causality
and simultaneity between lending activity and deposits (Boot, Greenbaum and Thakor (1993), Kashyap, Rajan and
Stein (2002), Mester, Nakamura and Renault (2007), Donaldson, Piacentino and Thakor (2018)).
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growth of 1.75 percentage points for home purchases, 1.25 percentage points for refinancing,

and 0.75 percentage points for home improvements. An advantage of the mortgage lending is

that it allows us to study the effect on loans that are more likely to be financed by deposits.

We exploit the inability of Fannie Mae and Freddie Mac to purchase jumbo mortgages to

identify loans that are likely to be funded by deposits. Importantly, this test allows us to

use bank × county × year fixed effects in our estimation, estimating the effect by comparing

lending growth for jumbo and non-jumbo mortgages, for each county-bank-year observation.

The results indicate that deposit shocks negatively affect the origination of jumbo mortgages

more than non-jumbo mortgages. A one standard deviation deposit shock is associated with

a 1.40 percentage points additional decline for jumbo mortgages relative to non-jumbo mort-

gages. The results indicate that the contraction in lending is more pronounced for jumbo

loans which are more likely to be funded by deposits.

Lastly, we examine the real effects of bank deposit shocks on firm outcomes. We use

young firms to identify firms that are likely to face borrowing constraints and are unable to

find new lenders immediately after their banks receive a negative shock. We document that

a one standard deviation deposit shock to the firms’ lead banks is associated with a 16%

decline in debt, 13% decline in the book value of assets, 9% decline in employment, and a

15% decline in capital expenditure for young firms relative to the old firms. This exercise is

relevant from two perspectives. First, it provides a glimpse of the mechanism of how deposit

shocks that translate into lending cuts transmit to the real economy. Second, this result

highlights the relevance of borrower constraints in the transmission of deposit shocks.

1.1 Related Literature

Our paper relates to the literature examining the origins of aggregate fluctuations. Gabaix

(2011) shows how idiosyncratic shocks can explain aggregate fluctuations when the distribu-

tion of firm size is fat-tailed. Acemoglu et al. (2012) show that microeconomic idiosyncratic

shocks may lead to aggregate fluctuations in the presence of intersectoral input–output link-

ages. Our work contributes to this literature by documenting that local deposit shocks can

explain aggregate fluctuations when multi-market banks exhibit a fat-tailed geographic dis-

tribution of deposits. Hence, our paper combines the two popular theories in the literature –
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the “granular” hypothesis and the network cascades. The fat-tailed geographic distribution

of bank deposits combined with the internal capital markets of multi-market banks results

in significant asymmetry in the salience of various regions as the source of funding to other

regions. Idiosyncratic shocks to such regions that are salient sources of deposit funding, are

transmitted to other regions through the network of multi-market banks. These idiosyncratic

shocks can account for aggregate fluctuations if these multi-market banks are large lenders

in the economy. Thus, this paper provides a potential answer to Cochrane (1994) – “will we

forever remain ignorant of the fundamental causes of economic fluctuations?”

Moreover, our work builds on the recent theoretical advances that document the

salience of financial frictions for explaining aggregate fluctuations. Khorrami (2021) presents

a theoretical framework showing that aggregate fluctuations emerge from idiosyncratic shocks

if and only if there are financial frictions. In an alternative framework, Pasten, Schoenle and

Weber (2017) show that financial frictions, such as price rigidity, can strongly amplify the

capacity of idiosyncratic shocks to drive aggregate fluctuations. We contribute to this liter-

ature in two ways. First, we present a simple framework that shows that financial frictions

are necessary for the amplification of idiosyncratic shocks. Second, we provide empirical

evidence supporting this hypothesis. Our results show that financial frictions such as reg-

ulatory constraints and banks’ informational advantages, as well as borrowers’ constraints

and inability to swiftly switch lenders can amplify idiosyncratic shocks.

Our paper relates to the longstanding literature, examining the role of banks in trans-

mitting shocks and increasing financial fragility.3 We contribute to this literature by intro-

ducing a new fact regarding the geography of deposits – a new potential source of financial

fragility. We document that bank deposits are geographically concentrated. We show that

this geographic concentration of deposits can make the overall economy more fragile as

shocks to these counties are transmitted across geographies by multi-market banks. We

also contribute to this literature, methodologically, by presenting novel bank-specific shocks,

constructed using the granular instrumental variables methodology presented in Gabaix and

Koijen (2020). Deposit shocks are constructed by combining the within-bank geographic

3Some works in this literature include Peek and Rosengren (2000); Khwaja and Mian (2008); Loutskina and Strahan
(2009); Schnabl (2012); Chodorow-Reich (2014); and Huber (2018) among others. These papers constitute a small
share of a very large literature, and is by no means, an exhaustive list.
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concentration of deposits with local natural disaster-induced property damages. We pro-

duce a panel of shocks which can be employed in future research. This differs from single

period systematic shocks, extensively used in the extant literature.

Lastly, our work is related to the literature examining the financial impact of natural

disasters or discoveries. Cortés and Strahan (2017) document the reallocation of bank lending

to affected areas after natural disasters. They argue that this effect is driven by increases

in local credit demand in the affected areas, and that the effect dissipates within a year. In

contrast, we identify a different channel. We examine the effect of natural disasters on bank

funding, which affects bank lending through the credit supply channel. Our specifications

include county × year fixed effects to specifically control for credit demand. While, county

× year fixed effects may be insufficient to control for within-year fluctuations in demand

due to natural disasters, our results exhibit persistence even ten years after the disaster,

long after the credit demand effects of natural disasters have reverted to zero. Another

set of papers document an increase in bank lending by local banks in counties affected by

natural disasters (Cortés (2014)) and new energy developments such as the shale gas boom

(Plosser (2012), Gilje (2019)). In contrast, we focus on how local disasters can result in large

deposit outflows for multi-market banks, resulting in lending contractions across counties

through bank internal capital markets. Additionally, we argue that local disaster shocks are

significant for multi-market banks because of the within-bank geographic concentration of

deposits. Our paper is also closely related to Gilje, Loutskina and Strahan (2016). Gilje,

Loutskina and Strahan (2016) document that banks exposed to shale booms enjoy liquidity

inflows, and exposed banks increase mortgage lending in non-boom counties. They argue

that local liquidity shocks affect credit through small and regional banks, as they have

limited access to external debt and equity markets. Regional banks are at the center of their

analysis. Our results are consistent with Gilje, Loutskina and Strahan (2016), as we show

that frictions such as informational advantages are crucial for the transmission of shocks.

However, we differ on two notes. First, we focus on the transmission of a negative liquidity

shock coming from disaster-induced property damages in counties that are salient sources

of deposit funding for other counties. Second, our transmission mechanism occurs through

the internal capital markets of large multi-market banks. This suggests that deposits are
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salient even for large multi-market banks and access to capital markets is not sufficient to

fully substitute for the decline in deposit growth. We argue that for idiosyncratic shocks to

explain aggregate fluctuations, it is necessary that the idiosyncratic shocks alter the behavior

of large players in the market.

The rest of the paper proceeds as follows. Section 2 presents a simple framework.

Section 3 presents the data used in the analysis. Section 4 documents the new fact about

the geographic concentration of deposits. Section 5 presents the methodology to construct

deposit shocks and documents the aggregate effect of deposit shocks. Section 6 discusses the

underlying channels through which deposit shocks can affect aggregate economic growth.

Section 7 concludes the paper.

2 Framework

In this section, we present a simple model of optimal bank allocation of funds for a multi-

market bank. This model is similar in spirit to the model of multinational firms discussed in

Giroud and Mueller (2019). This model illustrates how banks allocate internal funds upon

experiencing a local shock through their internal capital markets and the role of financial

frictions in the transmission of the shock.

Consider a multi-market bank operating in n regions with one branch in each region

denoted by i with i ∈ {1, ..., n}. Each bank branch receives deposits di from households and

disburses loans li at the start of the period. Each branch produces a revenue of αi× f(li) at

the end of the period, where f(li) satisfies the neoclassical conditions f
′
(li) > 0, f

′′
(li) < 0,

f(0) = 0, limx→0 f
′
(li) = ∞, and limx→∞ f

′
(li) = 0. Branches differ in their productivity,

as indicated by the term αi. αi captures the advantage that a bank may have in certain

regions. For example, branches may vary in their ability to produce valuable information

about hard-to-evaluate credits in certain regions. A branch may differ in its ability to procure

valuable information as a result of historical presence of the branch, presence of a physical

infrastructure, or extensive activity in that region (see Petersen and Rajan (2002), Berger

et al. (2005), Hauswald and Marquez (2006), Agarwal and Hauswald (2010), Huber (2018),

and Granja, Leuz and Rajan (2021) among others). Better than average access to local
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information can allow branches to earn rents, captured by αi. αi increases as the information

advantage of a branch increases. Each branch must return an amount of (1 + ri)× di to its

depositors at the end of the period. Bank lending decisions are funded out of deposit inflows.

Banks have internal capital markets that allow them to move deposits across branches to

make lending decisions to maximize overall bank value (Stein (1997)). Thus, the relevant

budget constraint is at the overall bank level, i.e.,
∑

i di ≥
∑

i li. The firm solves the following

problem (equation 1) where λ denotes the Lagrange multiplier associated with the budget

constraint.

max
{li,λ}i=n

i=1

[
∑
i

αi × f(li)−
∑
i

(1 + ri)× di] + λ[
∑
i

(di − li)] (1)

The first order conditions are:

[li] : αif
′(li)− λ = 0 ∀i (2)

[λ] : λ[
∑
i

di −
∑
i

li] = 0 λ ≥ 0 (3)

We draw two insights from the first order conditions. First, if the budget constraint is slack

or λ = 0, bank allocation of funds is first-best. The bank will allocate funds to each region i

until the marginal revenue product generated by li is equal to zero. If the budget constraint

is tight, i.e., the bank is constrained, the marginal revenue product generated by li is then

equal to λ, which is greater than zero. This suggests that when the bank is constrained, the

amount of funds allocated to each region i is strictly less than the amount of funds allocated

to each region i when the bank is unconstrained. Hence, when the bank is unconstrained,

the allocation of funds is first-best.

Next, we consider how a deposit shock in region j (j 6= i) affects lending in region i.

To study this, we differentiate the first-order conditions presented in equation 2 and 3 with
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respect to dj. This yields the following equations.

∂li
∂dj

=
1

αi · f ′′(li)
× ∂λ

∂dj
> 0 (4)

∂λ

∂dj
= [

∑
i

1

αif ′′(li)
]−1 < 0 (5)

Hence, a robust prediction of this framework is that negative shocks to deposits in one region

lead to a contraction in lending in all regions, including regions which are not directly affected

by the shock. Intuitively, a negative deposit shock in region j raises the shadow value of a

marginal dollar of funds, λ. As a result, banks adjust their lending activity in each region to

ensure that the optimality condition is satisfied. This is driven by the decreasing returns to

scale of loans, i.e., f
′′
(li) < 0. Simply put, multi-market banks smooth out negative deposit

shocks in one region by decreasing lending in all regions.

Additionally, we derive two other testable implications from this framework. First, the

decline in lending is larger for banks facing tighter financial constraints. This is represented

by the change in the shadow value of the marginal dollar of funds, following a deposit shock

∂λ
∂dj

. Intuitively, it implies that negative deposit shocks push banks closer to their constraints

resulting in a reduction in lending. Second, the decline in lending is lower in regions where

banks earn rents due to their superior ability in accessing information, as represented by αi.

The decline in lending, following a negative deposit shock, is lower in regions where banks

possess greater informational advantages. Intuitively, banks cut lending more in regions

where returns to lending are lower.

3 Data

We construct natural disaster shocks using the Spatial Hazard Events and Losses Database

for the United States (SHELDUS). SHELDUS is a county-level hazard and loss dataset,

providing detailed information on natural disaster dates, affected counties, and direct losses

(e.g., property and crop losses, injuries, and fatalities). Coverage of natural disasters includes

thunderstorms, hurricanes, floods, wildfires, and tornadoes. The data is sourced from the

“Storm Data and Unusual Weather Phenomena” published by the National Climatic Data

11



Center (NCDC). We report summary statistics on aggregate property damages in Table 1,

property damages by hazard type in A.6, and present a heatmap of the property damage

per capita in Figure A.1.

We obtain branch-level bank deposits data from the Federal Deposit Insurance Cor-

poration (FDIC). The FDIC conducts an annual survey of branch office deposits, the Sum-

mary of Deposits (SOD), for all FDIC-insured institutions. The survey collects information

on branch characteristics such as total deposits, information on parent banks, and detailed

addresses as of June 30th of each year. The data covers the universe of US bank branches

and spans from 1994 until 2018. We restrict the sample to banks that have branches in at

least 10 counties throughout our sample.

To examine lending outcomes driven by the bank deposit shock, we leverage small busi-

ness lending data collected under the Community Reinvestment Act (CRA), spanning from

1997 until 2018. The CRA defines small business loans as commercial and industrial loans of

$1 million or less. All depository institutions above a certain asset threshold (e.g., $1.252 bil-

lion in 2018) must report the geographic distribution of their small business loans. The CRA

data is the most comprehensive data on small business lending and covers approximately

86% of all loans under $1 million (Greenstone, Mas and Nguyen (2020)).

We supplement our analysis of bank lending with mortgage origination data collected

under the Home Mortgage Disclosure Act (HMDA), spanning from 1995 to 2017. Notably, we

categorize mortgage loans based on (1) loan type - mortgages for home purchases, refinancing

and home-improvement, and (2) loan size - jumbo and non-jumbo. Jumbo loans are typically

not sold to the Government Sponsored Enterprises (GSEs), Fannie Mae and Freddie Mac.

We extract balance sheet information of US non-financial and non-utilities firms from

Compustat and merge this data with the information on firms’ lead bank using Dealscan.

The data on quarterly bank balance sheet and income statement comes from the call report

data and data on regulatory bank capital from SNL , and spans from 1994 until 2018.

We use several macroeconomic shocks in our analysis, measured at the quarterly fre-

quency, spanning from 1994 until 2018. The data on common macroeconomic indicators

such as yields, total government expenditure and gross domestic product (GDP) comes from

FRED provided by the St. Louis Fed. The term spread is the government six-month yield
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minus the three-month yield. The government expenditure shock and economic growth are

defined as the percentage change in the total government expenditure and GDP, respectively.

The data on oil supply shocks and economic policy uncertainty index comes from Känzig

(2021) and Baker, Bloom and Davis (2016), respectively. We construct data on monetary

policy shocks and granular shocks to large firms as in Gorodnichenko and Weber (2016) and

Gabaix (2011), respectively.

4 Geographic Concentration of Bank Deposits

We begin our analysis by documenting several new facts on the geographic concentration

of deposits. First, we show that deposits are geographically concentrated within banks.

Second, we note that this geographic concentration is not a new phenomenon; deposits

exhibit geographic concentration within banks from 1994 – the first reported year in the

Summary of Deposits data. Third, the geographic concentration of deposits within bank is

evident across all banks, regardless of size. Lastly, we show that the county that raises the

largest deposits for any given bank is geographically dispersed across the US.

4.1 Banks raise 30% of deposits from a single county

Figure 1 demonstrates that deposits are geographically concentrated within banks. Figure

1a presents the relationship between the share of deposits and the county number ordered

by deposits. The county number refers to the rank of a county by the amount of deposits

it raises, i.e., county #1 refers to the county that raised the greatest amount of deposits for

a given bank. Hereafter, we describe county #1 as the largest deposit county. The share

of deposits associated with each county number is measured using three methods: Simple

Avg, Weighted Avg, and Reg Margins. The Simple Avg method takes the average share

of deposits in each county number. The Weighted Avg method takes the average share of

deposits in each county number, weighting by total assets of each bank. The Reg Margins

method retrieves the estimates associated with the regression of share of deposits on the

county number, after including bank × year fixed effects and county × year fixed effects.
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The three methodologies yield consistent results. Regardless of the methodology, we find

that the largest deposit county accounts for almost 30% of bank deposits.

4.1.1 Is geographic concentration a new phenomenon?

We complement this fact with a temporal analysis, investigating whether the geographic

concentration of deposits within banks has varied over time. In Figure 1b, we conduct a

temporal analysis to study how various measures of the share of deposits in the largest

deposit county have varied from 1994-2018. We present the time series plots of the simple

average, weighted average, first percentile, and tenth percentile of the share of deposits in

the largest deposit county. We draw three noteworthy insights from this analysis. First, we

find that geographic concentration of deposits within banks is apparent from 1994 – the first

reported year in the Summary of Deposits data. Second, we find that there is considerable

concentration even at the first and tenth percentile values of the share of deposits in the

largest deposit county. Third, we find that the deposit concentration exhibits a marginally

downward trend over time.

4.1.2 Does geographic concentration vary with bank characteristics?

Next, we investigate the prevalence of the geographic concentration of bank deposits. To

this end, Figure 2 examines the relationship between the geographic concentration of bank

deposits and bank size.4 Figure 2a reports the relationship between the percentile of bank

assets and share of deposits in the largest deposit county. Figure 2a indicates that there are

not any distinguishable differences in the share of deposits in the largest deposit county for

banks which operate at lower percentiles of bank assets relative to banks which operate at

the higher percentiles of bank assets. We investigate the issue further by documenting the

geographic concentration of bank deposits among the Big Four banks in the US, as shown

in Figure 2b. Figure 2b documents the relationship between the share of deposits and the

county number for the Big Four banks in the US. The share of deposits in the largest deposit

county is highest for Citibank (≈ 0.5), followed by JP Morgan (≈ 0.4), Wells Fargo (≈ 0.25),

4We replicate the analysis for other bank characteristics such as deposits, total liabilities, book value of equity, and
total loans and find similar results, see Appendix Figure A.2.
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and Bank of America (≈ 0.1).5 Overall, the results of this analysis indicate the prevalence

of geographic concentration of bank deposits across the distribution of bank size.

4.1.3 Is geographic concentration driven by online banking?

A potential concern of our analysis is that the deposit concentration may be spuriously

attributed to online deposits being reported at the bank’s headquarter branch. As a result,

one would expect the geographic concentration to mechanically increase over time as banks

raise a greater fraction of their deposits through their online branches. Figure 1b documents

a downward temporal trend in deposit concentration, instead of an upward trend, hence,

alleviating this concern. Moreover, Appendix Figure A.3 exhibits a decline in the average

share of deposits in the largest deposit county for the Big Four banks over our sample period

– the most active banks in online banking.

4.1.4 Geographic distribution of largest deposit counties

Lastly, we explore the geography of banks’ largest deposit county in Figure 3. The heatmap

illustrates two salient features associated with the largest deposit county: dispersion and

granularity. The figure illustrates that the largest deposit county is geographically dispersed

across the United States, as depicted in blue. The number of banks for whom a county is the

largest deposit county is represented by the intensity of the shading; counties which serve as

the largest deposit county for many (few) banks is shown in darker (lighter) blue. More than

50% of the largest deposit counties are the largest source of deposits for at least five banks.

This indicates the presence of granularity, in the sense of Gabaix (2011), associated with

the largest deposit county, i.e., certain counties are the largest deposit counties for several

banks.

5Appendix Figure A.3 shows the average share of deposits in the largest deposit county for the Big Four banks over
our sample period.
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5 Aggregate Fluctuations

This section investigates the deposit channel of aggregate fluctuations by documenting the

relationship between granular deposit shocks and aggregate economic growth. First, we doc-

ument the short-run and the long-run affects of local disaster shocks on local bank deposits.

Second, we develop a methodology to construct granular deposit shocks from local disaster

shocks. Third, we present our key finding – granular deposit shocks can explain fluctuations

in aggregate economic growth.

5.1 Disasters and Deposit Growth

This section investigates the short-run and long-run responses of local disaster shocks on

local deposit growth. Table 1 presents the summary statistics of deposit growth and property

damage following a disaster at the county-year level. The median deposit growth is 3.37%,

while the standard deviation is 9.20%. The median total property damage per capita is

$1.67 in 2018 dollars, while the median total property damage is $55,369 in 2018 dollars.

The distribution of property damage is right skewed with significant damages in the tails of

the distribution. We begin by studying the immediate response of deposit growth to disaster

shocks. The empirical specification is the following,

∆ln(Deposits)c,t = β ×Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t (6)

where ln(Depositsc,t) denotes the amount of deposits raised in county c in year t across

all banks, ∆ln(Depositsc,t) denotes year-over-year deposit growth, and Disaster Shockc,t is

measured as the aggregate dollar amount of property damage per capita in county c in year

t. θc and θs(c∈s),t indicate county and state × year fixed effects, respectively. The economic

consequences of a disaster may depend on the degree of location-specific adaptation, and

resilience (Guiteras, Jina and Mobarak (2015)), geography (Hsiang and Jina (2015)), and

other location-specific factors such as vulnerability to natural disasters. County fixed effects

help control for such location-specific factors, estimating β using only within county variation

in disaster shocks, while controlling for state-level time-varying factors.
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Table 2 presents the results from the estimation of equation 6. Columns 1-6 present

the estimate of β for successive levels of year, county, and state × year fixed effects. Across

all specifications, the point estimate is negative and statistically significant at the 1% level.

The estimate of interest remains stable in magnitude despite the model R2 increasing by 18

percentage points from column 1-6. Economically, a one standard deviation disaster shock,

denoting a loss of $570 per capita, is associated with a 0.07-0.11 percentage points decline

in deposit growth – comparable to the 25th percentile of deposit growth.6 These results are

robust to the inclusion of lagged shocks, shown in Appendix Table A.1.

We conduct a placebo test to validate the relationship between disaster shocks and

deposit growth is not spurious. We estimate equation 6, using the random assignment

of disaster shocks. We refer to this as Placebo Disaster Shock. Placebo Disaster Shock

is generated for each county-year from a standard normal distribution. We estimate the

coefficient associated with Placebo Disaster Shock variable from 1,000 simulations. To negate

the validity of the baseline results, the null hypothesis that the point estimate associated with

Placebo Disaster Shock is zero, must be rejected. Figure A.4 presents the kernel density of β,

coefficient associated with Placebo Disaster Shock from 1,000 simulations. The distribution

of β is centered around 0, varying from -0.0099 to 0.0107 with a standard deviation of

0.0035. The dashed red line denotes the location of the coefficient of the interaction term

from column 6 of Table 2. 1.6% of estimates, among the 1,000 simulated placebo β, lie to the

left of the dashed red line. Hence, we fail to reject the null hypothesis. The average point

estimate from the placebo analysis is statistically indistinguishable from zero. The results

of the placebo test corroborate that the baseline results are not spurious.

While these findings indicate an immediate decline in deposit growth following disaster

shocks, it is unclear how persistent these effects are. We conduct a Jordà projection to

analyze the long-run response of deposit growth to disaster shocks. The results of the

projection are presented in Figure 4. The findings indicate that the effect of disaster shocks

on deposit growth is permanent, exhibiting a strong negative effect of disaster shocks on

deposit growth even ten years after the shock. The persistence of the effect on deposit

6The effect is computed by multiplying the point estimate with the standard deviation of deposit growth. Specifically,
we multiply the estimate range [−0.0080,−0.0121] with the standard deviation of deposit growth (9.2%) to get the
effect range of [−0.07,−0.11].
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growth stands in stark contrast to the transience of the effect on lending growth in disaster

affected counties driven by the demand channel (Cortés and Strahan (2017)).7

The negative effect of natural disasters on local deposit growth is consistent with the

extant literature which documents negative local short-run and long-run economic effects of

natural disasters, particularly when disasters can be objectively measured using indicators

such as physical losses (see meta-analysis presented in Lazzaroni and van Bergeijk (2014) and

Klomp and Valckx (2014)). Other works have documented a negative long-run effect of large

natural disasters on life-satisfaction and happiness (Hudson et al. (2019)), and human health,

well-being and development (Kousky (2014)). As disasters destroy capital, households may

be forced to consume from their savings. This can produce a permanent decline in savings.8

Overall, our findings indicate that local disaster shocks negatively affect local bank deposits,

and, this effect is permanent.

5.2 Effect of Deposits on Aggregate Fluctuations

This section (1) presents the methodology to construct granular deposit shocks using lo-

cal disaster shocks, and, (2) documents the effect of negative deposit shocks on aggregate

economic growth using the GIV methodology developed in Gabaix and Koijen (2020).

5.2.1 Identifying Strategy

The primary objective of this paper is to study the relationship between deposit shocks and

aggregate fluctuations in economic growth. The relationship of interest is the following,

∆GDPt
GDPt−1

= α + β ×∆ln(Deposits)t−1 + εt (7)

where ∆GDPt

GDPt−1
is the US GDP growth at time t, and ∆ln(Depositst) is the total deposits

growth in year t. The coefficient of interest is β, which estimates the deposit elasticity of

7Cortés and Strahan (2017) document an increase in lending by banks in areas affected by disasters, however, this
increase in lending disappears one year after the disaster.

8Combining the household level savings data from Germany with the natural experiment of the European Flood of
August 2002, Berlemann, Steinhardt and Tutt (2015) document that natural disasters depress savings. We direct
the readers to the review of the literature presented in Botzen, Deschenes and Sanders (2019) for discussion and
relevance of different direct and indirect channels through which natural disasters affect local long-run economic
growth.
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economic growth. However, estimating the coefficient β directly as in equation 7 is likely to

produce biased estimates due to a host of endogeneity issues. For example, the error term

(εt) in equation 7 may capture unobserved latent factors correlated with demand and supply

of deposits that can bias the estimate.

We address this issue by constructing granular deposit shocks using local disaster shocks

à la Gabaix and Koijen (2020). Natural disasters are likely to be uncorrelated with the

observed and unobserved latent factors, thereby circumventing concerns of endogeneity. We

directly estimate the effect of the granular deposit shocks on aggregate fluctuations, under

the identifying assumption that the granular deposit shocks, constructed using exogenous

local disaster shocks, are uncorrelated to preexisting innovations in the GDP growth process.

We discuss the construction and properties of these shocks next.

5.2.2 Bank Deposit Shocks: Construction

In this section, we describe the construction of bank deposit shocks. Bank deposit shocks,

Γb,t for bank b at time t (quarter), are constructed by weighting county-level disaster shocks,

εc,t – property damage per capita in county c at time t – by the bank-county deposit share,

Db,c,t−1. Db,c,t−1 denotes deposits of bank b in county c. This is measured using the county-

level deposits reported by banks in the SOD database on the 30th of June of the previous

year.

Γb,t =
∑
c

{ Db,c,t−1∑
bDb,c,t−1

× εc,t} (8)

Next, we investigate whether various bank characteristics can predict bank deposit shocks

in Table 3. The bank characteristics under study include size, loans, total equity, cash,

demand deposits, net hedging, dividend on common stock, and operating income. Columns

1-8 present the estimates of a simple regression of the bank deposit shock, Γb,t, on each

bank characteristic. Columns 9 and 10 present the estimates from regressing the bank

deposit shocks on all bank characteristics. Column 10 includes bank and year fixed effects.

Bank characteristics under consideration along with bank and year fixed effects can explain

only 7% of total variation in bank deposit shocks. These findings demonstrate that bank
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characteristics cannot robustly predict bank deposit shocks in any statistical or quantitative

sense.

5.2.3 Bank Deposit Shocks: Properties

We examine the spatial and temporal dynamics of the bank deposit shocks in Figure 5.

Figure 5a plots the kernel density of the coefficients of a AR(1) process for each banks’ Γb,t.

While AR(1) estimates exhibit wide dispersion, a substantial mass is concentrated around

zero. The average AR(1) estimate is demarcated by the dashed red line at -0.03. This

estimate suggests that there is a low degree of persistence among the shocks, on average.

Figure 5b plots the kernel density of the bank-pairwise R2, produced from regressing the

deposit shocks across bank pairs. Similar to the kernel density of the coefficients of a AR(1)

process, there is wide dispersion in the R2 of the deposit shocks across banks. However, the

mass is concentrated around zero, as the average R2, demarcated by the dashed red line is

0.08.

5.2.4 Bank Deposit Shocks and Liquidity Creation

Next, we present the long-run responses of bank deposit growth and growth in bank liquidity

creation to bank deposit shocks. These tests are important for establishing the first stage,

that disaster-induced property damage to large deposit counties of a bank transmit to bank

deposits and liquidity creation.9 The results of the Jordà projections are presented in Figure

6. The findings indicate that the effect of bank deposit shocks on bank deposit growth

and growth in bank liquidity creation is immediate and persistent for several years. A

one standard deviation negative bank deposit shock results in an immediate decline of 0.97

percentage points in bank deposit growth. A one standard deviation negative bank deposit

shock results in an immediate decline of 1.27 percentage points in growth in liquidity creation.

The effect of bank deposit shocks on bank deposit growth and growth in liquidity creation

diminishes, starting five years after the initial shock. Hence, the granular bank deposit

shocks have a sizeable effect on bank deposit growth and growth in liquidity creation.

9We use “cat fat,” the preferred liquidity creation measure of Berger and Bouwman (2009), as the measure of bank
liquidity creation.
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Overall, our results show that bank deposit shocks lack temporal dynamics, exhibit low

correlation across banks, and can predict the aggregate bank-level decline in deposits and

liquidity creation. Therefore, these shocks are unlikely to be correlated with latent factors

and are a suitable candidate for bank-specific idiosyncratic shocks to deposits.

5.2.5 Aggregate and Granular Deposit Shocks

In this section, we describe the construction of aggregate and granular deposit shocks, us-

ing the bank deposit shocks described in section 5.2.2. Aggregate deposit shocks, Γt, are

constructed by weighting the bank deposit shocks by each banks’ lending share, Lb,t−1, in

period t− 1.

Γt =
∑
b

{ Lb,t−1∑
b Lb,t−1

× Γb,t} (9)

We present a time-series plot of the aggregate deposit shocks in Figure 7a. Based on a

narrative analysis of the crests, we label each peak and assess the magnitude of the disaster(s)

in Table 4. Major disasters include hurricanes, floods, wildfires, and earthquakes, which

are geographically dispersed across the United States. The insurance payout was largest

for Hurricane Katrina, at $87.96 billion, and lowest for the Nisqually earthquake, at $0.44

billion. Moreover, Figure 7b plots the relationship between insurance payouts and aggregate

bank shocks, and illustrates the estimated regression equation. The figure demonstrates that

there is a strong positive relation between insurance payouts and aggregate bank shocks.

Next, we compute granular deposit shocks from aggregate deposit shocks by subtracting

equal-weighted natural disaster-induced property damages per capita from the aggregate

shocks,

Γ∗t = Γt −
1

Nb

{
∑
b

{ 1

Nc

×
∑
c

1b,c,t × εc,t}}, (10)

where Nb is the number of banks and Nc is the number of counties. Gabaix and Koijen (2020)

show that subtracting equal weighted shocks from the weighted shocks eliminates common

observed and unobserved aggregate factors. Hence, granular shocks provide for better iden-
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tification as perfectly controlling for all aggregate factors may be impossible making them

an optimal proxy for idiosyncratic shocks to deposit growth. Intuitively, granular deposit

shocks captures the idiosyncratic deposit growth of large banks following natural disasters.

5.2.6 Granular Deposit Shocks and Aggregate Fluctuations

This section shows that granular deposit shocks can explain aggregate fluctuations. In Table

5, we regress GDP growth on the granular deposit shocks. Column 1 does not include

any fixed effects. Columns 2 and 3 include quarter, and, quarter and year fixed effects,

respectively. The results indicate that a one standard deviation granular deposit shock

reduces economic growth by 0.05-0.07 percentage points.

Table 6 documents the amount of variation in economic growth that can be explained

by granular deposit shocks. In columns 1-6, we regress GDP growth on lags of the granular

deposit shock, sequentially. In column 7, we present the results of the regression of GDP

growth on the granular deposit shock and five lags thereof. The R2 associated with column

7 demonstrates that granular deposit shocks can explain 3.30% of variation in economic

growth.

To better understand the relevance of granular deposit shocks in explaining economic

growth relative to other macroeconomic shocks, we conduct a horse race. We include oil

shocks, monetary policy surprises, uncertainty policy shocks, term spread, government ex-

penditure shocks, and the granular residual from Gabaix (2011). Table 7 presents these

results. Column 1 presents the estimate from the regression of GDP growth on the gran-

ular deposit shocks, reproduced from column 1 of Table 5. Columns 2-7 sequentially add

oil shocks, monetary policy surprises, uncertainty shocks, term spread, government expen-

diture shocks, and the granular residual, respectively. Column 8 includes all granular and

macroeconomic shocks. There are two takeaways from this table. First, the effect of the

granular deposit shocks on GDP growth is robust to controlling for other macroeconomic

shocks. Specifically, across all columns, a one standard deviation granular deposit shock

reduces economic growth by 0.06-0.08 percentage points. Second, the explanatory power of

granular deposit shocks is comparable, and in some cases higher than other commonly used
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macroeconomic shocks such as oil shocks, monetary policy shocks, uncertainty shocks, term

spread, and the granular residual from Gabaix (2011).

5.2.7 Do the disaster shocks reflect the collateral channel?

Thus far, we have argued that our measured shocks reflect the deposits channel. However,

a concern with our proposed mechanism is that the disaster shock may reflect shocks to

collateral. We directly compare the deposits channel with the collateral channel in Table A.2,

by comparing our granular deposit shock with a granular collateral shock. The bank-level

collateral shock is computed by weighting the county-level disaster shocks by the amount

of small business lending and mortgage lending conducted by each bank in each county,

respectively. We use these bank-level shocks to produce aggregate collateral shocks, as

indicated in equations 9 and 10. The granular collateral shock used in Table A.2 is the mean

of the granular collateral shock based on mortgage lending and the granular collateral shock

based on small business lending. The results indicate that the collateral channel does not

drive the aggregate response in GDP growth. The magnitude of the collateral channel is

neither economically nor statistically significant; the point estimate of the granular collateral

shock is minuscule relative to the magnitude of the deposits channel. Moreover, column 2

indicates that the R2 associated with the granular collateral shock is nil, hence, the granular

collateral shock does not explain the variation in GDP growth. Columns 1 and 3 indicate

that a one standard deviation granular deposit shock reduces economic growth by 0.06-0.08

percentage points – the same range of estimates produced by Table 7. Hence, this test

corroborates that the deposits channel can explain aggregate fluctuations.

5.2.8 Long-Run Response

Next, we study the long-run responses of GDP growth to the granular deposit shocks. Figure

10a plots the long-run response of GDP growth to the granular deposit shocks using a Jordà

projection. The figure indicates that the effect of granular deposit shocks on GDP growth is

immediate, however, transitory; the effect wanes gradually over the course of several quarters.

This result contrasts with the finding of Figure 4, in which we find that the effect of disaster

shocks on deposit growth is permanent. This difference in the permanence of the response
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may be attributed to the salience of financing frictions. Granular deposit shocks affect GDP

growth in the short-run when financial frictions are binding and acute. With time, firms and

households may substitute to other sources of external financing, hence, the effect dissipates

in the long-run.

A concern with the analysis, so far, is that our estimation strategy may be capturing the

direct effect of disasters on economic growth rather than the effect of idiosyncratic shocks to

deposit growth. We address this concern by examining the long-run response of GDP growth

on the aggregate disaster shocks, measured using total property damage per capita, using a

Jordà projection. Figure 10b reports these results. There is no statistically or economically

relevant direct effect of disasters on economic growth, as the point estimate remains close

to zero over time. This lends credence to our main finding that our results are driven by

idiosyncratic shocks to deposit growth.

5.2.9 Magnitude of the Deposits Channel

For ease of interpretation, we convert our baseline estimate to units of deposit and lending

growth. To this end, we estimate a two stage least square (2SLS) specification. We regress

deposit growth on the granular deposit shocks in the first stage, and use the predicted

values of deposit growth from the first stage to identify the deposit elasticity of economic

growth in the second stage. We repeat this exercise with lending growth to identify the loan

supply elasticity of economic growth. Similarly, we estimate the effect of deposit growth on

loan supply growth. Table 8 reports these results. Columns 2 and 4 report the first stage

for deposit growth and lending growth, respectively. Columns 1 and 3 report the deposit

and loan supply elasticity of economic growth, respectively. Our loan supply elasticity of

economic growth is 0.14. This indicates that a 1 percent decrease in the loan supply results

in a decline of economic growth by 0.14 percentage points. While the f-statistic associated

with this estimate is low, the magnitude is comparable to that documented in the literature

so far. Kundu and Vats (2020) empirically estimate that a 1% increase in bank lending

through the loan supply channel increases economic growth by 0.05-0.26 percentage points.

Using a structural model, Herreño (2020) estimates that a 1 percent decline in aggregate

bank lending supply reduces aggregate output by 0.2 percent. Our estimate for the deposit
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elasticity of economic growth is 0.87. The f-statistic associated with this estimate is 11.14.

The results indicate that a 1 percent decrease in deposit growth results in a decline of

economic growth by 0.87 percentage points. The deposit elasticity of economic growth is

substantial, and corroborates that the deposits channel can significantly influence aggregate

fluctuations. The deposit elasticity of economic growth is almost six times the lending supply

elasticity of economic growth, and is consistent with the observation in column 5 that a 1%

increase in deposit growth corresponds to a 6% increase in lending growth.

5.2.10 Salience of deposit concentration, disaster shocks and lending share

Our shocks constructed using the GIV methodology of Gabaix and Koijen (2020) relies on

three forces to explain aggregate fluctuations – the within-bank geographic concentration of

deposits, the magnitude of disaster shocks, and the importance of the bank in the overall

economy, measured its share of lending activity. This section highlights the salience of these

three forces by examining the sensitivity of the estimate to placebo shocks that gradually

dilute the importance of each force.

Our first exercise examines the importance of deposit concentration. We construct a

series of placebo shocks by omitting the top K deposit counties for each bank, where K

ranges from 1 to 15. For example, when K = 6, we omit each bank’s six largest deposit

counties in the construction of our granular shocks. The intuition of this test is that if

the deposit concentration of banks does not matter for our shocks to explain aggregate

fluctuations, we should observe similar results using the placebo shocks. Otherwise, if deposit

concentration is an important ingredient, the ability of these placebo shocks to explain

aggregate fluctuations should decline as K increases. Figure 11a reports the results from

this exercise. K = 0 indicates the baseline coefficient associated with the regression of our

baseline granular shocks on the GDP growth rate. Figure 11a shows that as K increases,

the coefficient rapidly declines to zero. This test indicates the salience of the geographic

concentration of bank deposits. Moreover, the test demonstrates that the disasters and the

relative shares of bank lending are insufficient in and of themselves to generate aggregate

fluctuations.

Our second placebo exercise examines the relevance of the importance of banks in the

25



economy. We measure the relative importance of each bank in the economy using its share of

total lending activity. Specifically, we construct a series of placebo shocks by excluding the

most significant banks for each quarter. The intuition of this test is that if large disasters

hit deposit counties of small banks, the aggregate effects are likely to be muted. However, if

disasters hit the important deposit counties of large banks, the aggregate effect is expected

to be larger à la Gabaix (2011). Moreover, large banks are vital nodes in the lending

network structure, hence, more likely to transmit shocks across the country à la Acemoglu

et al. (2012). We construct a series of shocks by varying the bank size. Specifically, we

exclude banks with lending share above the Kth percentile, with K ranging from the 95th

to the 40th percentile in 5 percentile increments. Figure 11b reports the results from this

analysis. In the x-axis, All indicates the baseline coefficient associated with the regression

of our baseline granular shocks on the GDP growth rate. The subsequent labels denote the

percentile of the bank size distribution used to construct the shocks. The figure shows that

as we construct our shocks by excluding systemically important banks, the effect gradually

declines and converges to zero. This indicates the importance of shocks to large banks in

explaining aggregate fluctuations.

Our third placebo exercise examines the relevance of the magnitude of disasters. We

construct a series of placebo shocks by excluding the most significant disasters for each

quarter. Specifically, we create a series of twelve shocks by excluding disasters with property

damage per capita above the 95th and the 40th percentile in 5 percentile increments. Figure

11c reports the results from using these placebo shocks. In the x-axis, All indicates the

baseline coefficient associated with the regression of our baseline granular shocks on the GDP

growth rate. The subsequent labels denote the percentile of the disaster size distribution

used to construct the shocks. The figure shows that as we construct shocks by omitting large

disasters, the ability of the shocks to explain aggregate fluctuations gradually declines. The

results indicate that small disasters are likely to have only a temperate effect even if they

hit the top deposit counties of the largest banks.
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6 Mechanism

Thus far, we have demonstrated that deposit shocks can affect aggregate economic growth. In

this section, we explore the underlying channels through which this occurs. Using micro-data

on small business lending and mortgage lending, we document a negative relation between

bank deposit shocks and lending activity – the key mechanism through which shocks to

banks affect economic growth. Specifically, we document that the contraction in lending

following deposit shocks is driven by large banks, i.e., deposit shocks alter the lending be-

havior of large players – a necessary condition for idiosyncratic shocks to explain aggregate

fluctuations. Additionally, we show that financial frictions such as bank capital constraints

and informational advantages are crucial for the transmission of deposit shocks. Moreover,

we document that the contraction in lending is driven by loans that are more likely to be

funded by deposits. Lastly, we examine the real effects of bank deposit shocks on firm

outcomes, demonstrating the channel (borrower constraints) through which deposit shocks

which translate into lending cuts transmit to the real economy.

6.1 Small Business Lending & Deposit Shocks

We begin our exploration of the underlying mechanism by studying the relationship between

small business lending growth and deposit shocks. We focus on small business lending

for two primary reasons. First, small businesses are the “lifeblood” of the US economy,

accounting for 44% of economic activity and 48% of total employment (Kobe and Schwinn

(2018)). Second, small business loans are risky and illiquid assets, and rarely securitized,

hence, lending in this market is especially dependent on stable deposit funding from banks

(Drechsler, Savov and Schnabl (2017)).

Our empirical specification to estimate the effect of deposit shocks on lending growth

is the following.

∆ln(Lending)b,c,t = β × Γb,t−1 + θc,t + θb,c + εb,c,t (11)

where ∆ln(Lending)b,c,t denotes the growth in small business lending by bank b in county
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c and year t. Γb,t−1 denotes bank specific deposit shocks measured using banks’ deposit

weighted exposure to disasters in year t−1. θc,t and θb,c denote county × year and county ×

bank fixed effects, respectively. We interpret the estimate of β as a within-county estimator,

identified using variation in deposit shocks across banks within a county-year observation.

This estimator measures the effect of deposit shocks on bank lending under the identifying

assumption that banks face identical investment opportunities within a county. County ×

year fixed effects also allow us to control for all direct economic effects of disasters. A threat

to our identifying assumption is that banks may have comparative advantages in certain

areas due to historical connections between the bank and the area. Therefore, we include

county × bank fixed effects to control for the time-invariant importance of a bank in a

county. A weaker version of our identifying assumption states that any friction that creates

a wedge between available investment opportunities to different banks within a county, after

controlling for county × bank fixed effects, is unrelated to the idiosyncratic disaster shocks

elsewhere.

Table 9 reports the estimates from the estimation of equation 11. Column 1 presents

results from a simple regression of lending growth of bank b in county c in year t on bank-

specific deposit shock. Column 2-5 sequentially add several permutations of bank, year, and

county fixed effects to finally estimate equation 11 in column 6 with county × year and

county × bank fixed effects. Across all columns the point estimate of β is negative and

statistically significant at the 1% level. Moreover, the magnitude of the estimate remains

stable despite an increase of 20 percentage points in the model R2. Economically, a one

standard deviation deposit shock is associated with a decline of 1.09-1.87 percentage points

in lending growth.

6.1.1 Robust to Exclusion of Disaster-Prone Areas

A concern with our interpretation of the estimate is that it may still capture some effect of

disasters, despite controlling for the county × year fixed effects. We address this concern by

conducting a subsample analysis in Table A.3, presenting the results from replicating column

6 in Table 9 for counties unaffected by disasters, and counties affected by disasters.The results

indicate that a one standard deviation deposit shock is associated with a decline of 4.48
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percentage points and 1.57 percentage points in lending growth in unaffected and affected

counties, respectively. However, the estimates for the affected and the unaffected areas are

not statistically different from each other. This suggests that our results are unlikely to be

driven by counties which experience direct disaster shocks.

6.1.2 Robust to Exclusion of Credit Card Banks

Further, another concern in our analysis is the inclusion of small business credit card banks

in the sample. This is problematic for two reasons. First, credit card loans may be un-

representative compared to traditional small business loans. Second, the geography of bank

deposits for credit card banks may be misrepresented due to its funding structure. For exam-

ple, Chase USA’s banking office is not open to the public, and the majority of their deposits

come from JP Morgan Chase Bank as well as other affiliates (Schaffer and Segev (2021)).

Table A.4 shows that our results are not sensitive to the inclusion of credit card banks. We

identify loans from credit card bank, using tow alternate definitions. In column 1, we drop

banks that have at least $1 billion in loans under $100K and these loans constitute at least

75% of these loans, following Adams, Brevoort and Driscoll (2020). In column 2, we drop

banks that have at least 99% of loans under $100K, and where the average loan amount is

less than $15K, following Board of Governors of the Federal Reserve System (2010). Our

results indicate that a one standard deviation deposit shock is associated with a decline of

1.29-1.48 percentage points in lending growth. This estimate is statistically significant at

the 1% level, and is within range of the estimates produced in our baseline table. Hence, we

rule out concerns that our effects are driven by credit card banks.

6.1.3 Long-Run Response

This section presents the long-run response of small business lending growth on deposit

shocks using a Jordà projection. This exercise serves two purposes. First, it allows us to

quantify the long-run response of bank lending to bank deposit shocks. Second, it addresses

concerns of reallocation of bank lending following a disaster. Cortés and Strahan (2017)

document a reallocation of bank lending towards disaster affected areas from unaffected

areas following a disaster. This reallocation is driven by higher demand for bank loans
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and greater lending incentives due to federal policies in affected areas. However, Cortés

and Strahan (2017) show that the heightened demand and incentives in disaster affected

areas dissipate one year after the disaster, diluting the difference in lending between affected

and unaffected areas. Our results so far are consistent with Cortés and Strahan (2017).

Examination of the long-run response allows us to distinguish our supply side channel from

the demand side channel of Cortés and Strahan (2017).

Figure 9 reports the coefficients from the Jordá projection for 10 years after the disaster.

All estimates are negative and statistically different from zero. The estimate also exhibits

temporal dynamics; the estimate gradually increases in magnitude in the five years after

the initial shock, and gradually decreases thereafter. Overall, the results from the Jordá

projection show that the effect of deposit shocks on small business lending persists for several

years after the disaster, as a one standard deviation deposit shock results in a cumulative

decline of 4.68 percentage points in lending growth, five years after the shock. For robustness,

we separate the long-run response for counties directly affected and unaffected by disasters

and find qualitatively similar results (see Appendix Figure A.5).

6.1.4 Does the Geography of Bank Deposits Matter?

In this section, we investigate whether the geography of bank deposits is an important

consideration for assessing the effects on small business lending. To this end, we present the

response of small business lending growth to an alternative measure of bank deposit shocks.

We compute bank shocks by taking a simple average of property damage per capita across

the top K counties, ordered by the share of deposits raised in the county by the bank. The

procedure sequentially increases K from 1 to 50, i.e., in the first iteration only the property

damage per capita in the largest deposit county is considered and in the last iteration, a

simple average of property damage per capita in the top 50 counties is considered. This

measure ignores the geography of bank deposits and assumes that the deposits are equally

distributed among K counties. Figure 12 reports the results from this estimation exercise.

The figure shows that small business lending is negatively related with property damage per

capita when K = 1, i.e., when we consider only the effect from the largest deposit county.

However, the magnitude of the effect declines as we increase K. The effect converges to zero
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after K = 10. This indicates that idiosyncratic shocks to the largest deposit counties are

crucial. Disregarding the geography of bank deposits does not generate the effects presented

earlier in the analysis. Importantly, this indicates that in the counterfactual case, where

deposits are equally distributed across geography, banks would be better adept at smoothing

out idiosyncratic shocks.

6.1.5 Large Banks Amplify Transmission

A necessary condition for idiosyncratic shocks to explain aggregate fluctuations is that the

idiosyncratic shocks must affect the behaviour of the large players in the market. Theoret-

ically, idiosyncratic bank-level shocks may explain aggregate fluctuations if the distribution

of bank sizes is fat-tailed, as 1√
N

diversification does not occur in an economy with a fat-

tailed distribution (Gabaix (2011)). While Figure 2b demonstrates that the four largest

banks in the US exhibit geographic concentration of their deposits, indicating the presence

of fat tails, it does not necessarily imply that the large banks alter their lending behaviour

following deposit shocks.

In this section, we empirically test whether larger banks contract lending activity in

response to deposit shocks. Specifically, we examine the transmission of bank deposit shocks

on lending growth for small, medium, and large banks. Small banks are banks with less

than or equal to $2 billion in assets. Medium banks are banks with greater than $2 billion

in assets and less than or equal to $35 billion in assets. Large banks are banks with greater

than $35 billion in assets. Table 10 reports the results for the estimation of equation 11 for

small, medium, and large banks, separately. The results indicate that large banks reduce

lending growth by 4.18 percentage points following a deposit shock. This estimate is greater

than the baseline estimate of 1.87 percentage points for all banks, and 1.50 percentage points

for medium sized banks. The effect is also present among the top 20 banks, measured by

assets. Hence, our results are consistent with the theoretical literature, suggesting that large

banks alter their lending behavior following idiosyncratic shocks, explaining the aggregation

of idiosyncratic shocks in effectuating aggregate fluctuations.
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6.2 Frictions and and the Transmission of Idiosyncratic Shocks

This section documents the relevance of frictions such as bank capital constraints, infor-

mational frictions, and borrower constraints in the aggregation of idiosyncratic shocks as

discussed in section 2.

6.2.1 Bank Constraints and the Transmission of Idiosyncratic Shocks

This section examines the role of bank capital constraints in the transmission of deposit

shocks. As regulation imposes additional constraints and balance sheet costs, it can impair

banks’ resilience to unanticipated shocks by pushing banks closer to their constraints. This

can result in lending contraction following a deposit shock, as discussed in section 2. We

test this using the following empirical specification:

∆ln(Lending)b,c,t = β1×λb,t−1×Γb,t−1 + β2×λb,t−1 + β3×Γb,t−1 + θc,t + θb,c + εb,c,t (12)

where λb,t−1 denotes whether a bank b is capital constrained or not in year t− 1. A bank is

defined to be capital constrained if it has lower than the median value of tier 1 capital ratio.

∆ln(Lending)b,c,t denotes growth in small business lending by bank b in county c in year

t, and Γb,t−1 denotes deposit shocks to bank b in year t − 1, measured using previous year

deposit weighted exposure to disasters. Table 11 presents the results from the estimation of

equation 12. The results indicate that the decline in lending growth is driven by constrained

banks. The point estimate associated with Low Tier 1 Ratiob,t−1×Γb,t−1 is negative, remains

stable, statistically significant, and economically meaningful across all columns. Specifically,

a one standard deviation deposit shock is associated with an additional decline in lending

growth by 21-25 percentage points for constrained banks relative to unconstrained banks.

6.2.2 Information Frictions and the Transmission of Idiosyncratic Shocks

This section examines the transmission of idiosyncratic deposit shocks in the presence of

informational frictions. Specifically, we examine whether banks transmit shocks more to

areas where they lack informational advantages. The discussion in section 2 indicates that

banks contract lending in areas where they lack informational advantages following deposit

32



shocks. We examine the transmission of idiosyncratic bank deposit shocks to markets where

banks lack informational advantage using following empirical specification:

∆ln(Lending)b,c,t = β1×NCb,c,t−1×Γb,t−1+β2×NCb,c,t−1+β3×Γb,t−1+θc,t+θb,c+εb,c,t (13)

where ∆ln(Lending)b,c,t denotes growth in small business lending by bank b in county c in

year t, and Γb,t−1 denotes deposit shocks to bank b in year t − 1, measured using previous

year deposit weighted exposure to disasters. NCb,c,t−1 refers to non-core markets – markets

where banks lack informational advantage. Banks have informational advantages in their

core markets, defined using two classification schemes. First, for each bank, a county is

defined as a core market if the bank has a physical branch there, and non-core otherwise.

Second, a county is defined as core county if the bank accounts for above-median share of

lending in the county-year, and non-core otherwise. These definitions are based on the prior

literature which argues that banks have greater access to private and soft information about

the quality of borrowers and their collateral in areas where they are most proximate and

active (see Petersen and Rajan (2002), Berger et al. (2005), Hauswald and Marquez (2006),

Agarwal and Hauswald (2010), Granja, Leuz and Rajan (2021)).

Table 12 reports the results from the estimation of equation 13 using the first definition

of core/non-core markets, based on the presence of a bank-branch in the county. The results

indicate that the decline in lending growth is more severe for counties where banks do not

have a physical branch. The point estimate associated with NCb,c,t−1 × Γb,t−1 is negative,

remains stable, statistically significant, and economically meaningful across all columns.

Specifically, a one standard deviation deposit shock is associated with an additional decline in

lending growth by 1.53-1.94 percentage points in counties where banks do not have a physical

branch. Appendix Table A.5 reports the results using the second classification scheme in

which core is defined by above-median share of lending in a county-year. The results indicate

that a one standard deviation deposit shock is associated with an additional decline in lending

growth by 1.52-2.17 percentage points in counties where banks have limited lending presence.

Overall, the results, using the two alternative definitions of informational advantage, indicate

that banks contract lending in areas where they lack informational advantages following
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deposit shocks.

6.2.3 Borrower Constraints and the Transmission of Idiosyncratic Shocks

This section examines the role of borrower constraints in the transmission of deposit shocks.

Firms which are more dependent on banks as a source of external financing are hypothesized

to drive the response in lending growth to deposit shocks. We use size as a proxy for external

finance dependence, to identify firms which are most vulnerable to deposit shocks. A firm

is small if its gross revenue is less than $1 million, and large otherwise. Our empirical

strategy estimates the effect of deposit shocks on lending growth to constrained borrowers

by comparing small business loans to small firms and relatively large firms for each county-

bank-year observation by including bank × county × year fixed effects. In addition, we

include small × bank × county fixed effects to control for the time-invariant importance of

small firms that obtain loans from a bank in a county. The inclusion of these fixed effects

relaxes our weak identification assumption. Table 13 presents the estimates of the effect.

The results indicate that deposit shocks transmit more to constrained borrowers relative

to unconstrained borrowers. A one standard deviation deposit shock is associated with a

1.52-1.87 percentage points additional decline for small firms relative to large firms. Hence,

the contraction in lending is pronounced for small firms.

6.3 Mortgage Lending & Deposit Shocks

We extend the analysis in section 6.1 to examine the effect of deposit shocks on mortgage

lending. We focus on the mortgage market as it is a major financial sector – the total

mortgage debt outstanding was reported to be $16.56 trillion in 2020 or 79% of GDP in the

same year (Statista Research Department (2021); BEA (2021)).

We begin by estimating the effect of deposit shocks on mortgage lending growth in

Table 14. We disaggregate mortgage lending by mortgage type. Column 1 reports the

point estimate associated with mortgage lending for home purchases. Column 2 reports the

point estimate associated with mortgage lending for refinancing. Column 3 reports the point

estimate associated with mortgage lending for home improvement. The point estimate is
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interpreted as a within-county estimator, identified using variation in deposit shocks across

banks within a county-year observation. In addition, we include county × bank fixed effects

to control for the time-invariant importance of a bank in a county. The results indicate

that a one standard deviation deposit shock is associated with declines in lending growth

of 1.87 percentage points for home purchases, 1.20 percentage points for refinancing, and

0.82 percentage points for home improvements. The pecking order of effects on different

mortgage types is consistent with the argument that contracting frictions are less pronounced

for home refinancing and improvement relative to home purchases because borrowers have

an established payment history for the former (Gilje, Loutskina and Strahan (2016)). This

implies that lending contraction is dominant in loan types where banks face more contracting

frictions.

6.3.1 Long-Run Response

Next, we examine the long-run response of mortgage lending growth on deposit shocks as

shown in Figure 13. The figure reports the coefficients from the Jordá projection for 10

years after the disaster. The estimates are negative and statistically different from zero for

several years following the disaster. The effect of deposit shocks on mortgage lending persists

for several years after the disaster, as a one standard deviation deposit shock results in a

cumulative decline of 5 percentage points in lending growth, three years after the shock. The

long-run response exhibited in mortgage lending is consistent with evidence of the supply

side channel described in section 6.1.3 in the context of small business lending.

6.3.2 Is the effect more dominant for lending funded by deposits?

We further examine the transmission of deposit shocks through the mortgage market by ex-

ploiting a unique feature of the market. Banks often securitize mortgages, replacing deposits

with bonds as a source of finance. This securitization is due to the secondary market ac-

tivities of the government-sponsored enterprises (GSEs, i.e., Fannie Mae and Freddie Mac).

Loutskina and Strahan (2009) show that the supply of jumbo mortgages is driven by deposit

funding and liquidity constraints, as GSEs do not securitize jumbo mortgages. We exploit

the inability of Fannie Mae and Freddie Mac to purchase jumbo mortgages to identify loans
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that are likely to be funded by deposits. An additional advantage of this analysis is that we

can include bank × county × year fixed effects in estimating the effect by comparing jumbo

and non-jumbo mortgages for each county-bank-year observation. In addition, we include

jumbo × bank × county fixed effects to control for the time-invariant importance of jumbo

mortgages extended by a bank in a county. This innovation in fixed effects allows us to relax

our weak identification assumption. Table 15 reports the results for estimating the differ-

ence in lending growth of jumbo and non-jumbo mortgages by affected banks. The results

indicate that deposit shocks negatively affect the origination of jumbo mortgages more than

non-jumbo mortgages. A one standard deviation deposit shock is associated with a 3.58

percentage points additional decline for jumbo mortgages relative to non-jumbo mortgages.

The results indicate that the contraction in lending is pronounced for loans that are more

likely to be funded by deposits.

6.4 Firm Response, Deposit Shocks & Financial Frictions

Next, we examine the effect of bank deposit shocks on real firm outcomes. For each firm, we

identify the lead banks using Dealscan data. and aggregate the deposit shocks experienced by

all lead banks of a firm. Further, we classify firms as being financially constrained based on

the age of the firm, measured by the number of years since the initial public offering. Hadlock

and Pierce (2010) document a linear relation between firm age and constraint indicating

that young firms are more financially constrained. Moreover, young firms rely on lending

relationships with banks to procure external financing (Petersen and Rajan (1994)). Hence,

examining the heterogeneity in the cross-sectional response of young and old firms to deposit

shocks experienced by their lead banks can shed light on the salience of bank-borrower

lending relationships and financial constraints in transmitting bank deposit shocks to the real

economy. This test highlights the role of frictions in the amplification of idiosyncratic shocks

to aggregate fluctuations as discussed in Dinlersoz et al. (2018). We test this hypothesis,

using the following specification:

ln(yf,t) = β1×Y oungf,t×
∑
b

Γb,t−1 +β2×Y oungf,t+β3×
∑
b

Γb,t−1 + θi,t+ θf + εf,t (14)
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where ln(yf,t) denotes firm level outcome variables which include the natural logarithm

of total debt, book value of assets, employment, and capital expenditure. Y oungf,t is an

indicator variable that takes a value of 1 for firms with age lower than the median value of

age for all firms in that year.
∑

b Γb,t−1 refers to the aggregate deposit shocks experienced by

all banks associated with firm f . θi,t and θf denote industry × year and firm fixed effects,

respectively. The estimate of β1 is a within-firm estimator, while controlling for industry

level business cycle.

Table 16 reports the results from the estimation of equation 14. Columns 1-4 use the

natural logarithm of total debt, book value of assets, employment and capital expenditure

as the key dependent variable, respectively. As expected, the estimates of both Y oungf,t

and
∑

b Γb,t−1 are negative. The estimate of interest associated with the interaction term

Y oungf,t×
∑

b Γb,t−1 is negative and statistically significant across all columns. This indicates

that young firms are more responsive to deposit shocks experienced by their banks. Specif-

ically, a one standard deviation deposit shock to the firms’ lead banks is associated with a

16% decline in debt, 13% decline in the book value of assets, 9% decline in employment,

and a 15% decline in capital expenditure. This result highlights the role of bank-borrower

lending relationships and borrower financial constraints in transmitting deposit shocks to

the real economy.

7 Conclusion

Liquidity transformation is a key function of banks. Banks provide liquidity in the economy

by funding long-term, illiquid assets with liquid liabilities, primarily through demand de-

posits. While liquidity transformation is critical for financing long-term illiquid assets, it is

also a source of vulnerability for banks and the economy. It is well-established that aggregate

shocks to bank capital or deposits affect bank lending activity. This paper proposes a new

source of financial fragility: the geography of bank deposits.

We introduce a new fact on the geographic concentration of bank deposits. On average,

30% of bank deposits are concentrated within a single county. The geographic concentration

of bank deposits within-bank is widespread, across banks of all sizes, including the Big
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Four banks. We show that disaster shocks to counties which exhibit deposit concentration

can negatively affect bank deposits. Multi-market banks transmit these deposit shocks to

other counties through their internal capital markets. Moreover, the deposit shocks can

explain aggregate fluctuations when large lenders in the economy are affected by the local

disaster shocks. Local disaster shocks result in aggregate fluctuations through their effect

on deposits, which negatively affect bank lending. The negative effects on bank lending are

large and persistent, and amplified in the presence of financial frictions including regulatory

constraints, informational advantages, and borrower constraints.

Our paper introduces a hitherto undocumented source of financial fragility that may

inform academics and policymakers working on the design of optimal stabilization policies.

Concretely, the US Department of Justice Antitrust Division and FTC’s Bureau of Com-

petition review banks mergers and acquisitions to enforce the nation’s antitrust laws. In a

similar spirit, our findings suggest that regulators ought to consider the deposit concentration

of merged banks for its implications on financial stability.
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Figure 1: Geographic Concentration of Deposits
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(b) Time Series

This figure uses the summary of deposit (SOD) data from 1994 to 2018 and illustrates the geographic concentration
of bank deposits. Figure 1a orders counties by their deposit shares for each bank (the county number refers to the
rank of a county by the amount of deposits it raises, i.e., county #1 refers to the county that raised the greatest
amount of deposits for a given bank.) and reports the average deposit share of the top 20 counties. The blue line
shows the simple average of the deposit share, the red line shows the average deposit share weighted by bank total
assets, and the green line shows the average deposit share controlling for bank-year and county-year fixed effects.
Figure 1b reports the average deposit share of the counties with the largest deposit share (i.e., county # 1) by year
from 1994 to 2018. The time series plots of the simple average, weighted average, first percentile, and tenth percentile
of the share of deposits in the largest deposit county in blue, red, green, and yellow, respectively.
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Figure 2: Bank Distribution of Deposit Concentration
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(b) Four Largest Banks

This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the relation between the
geographic concentration of bank deposits and bank size. Figure 1a sorts banks by their total assets and reports the
average deposit share of counties with the largest deposit share against the percentile of the bank assets i.e., average
value of deposit share in the largest deposit counties corresponding to the percentile of bank assets. Figure 1b reports
the deposit shares in the top 20 counties for the four largest banks: Citibank (blue line), JP Morgan (red line), Wells
Fargo (green line), and Bank of America (yellow line). The county number refers to the rank of a county by the
amount of deposits it raises, i.e., county #1 refers to the county that raised the largest amount of deposits for a given
bank.
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Figure 3: Geography of Largest Deposit County

This figure illustrates the geography of a county with the largest deposit share for a given bank for the period 1994
to 2018. The intensity of the blue shading represents the number of banks for whom a county has the largest deposit
share.
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Figure 4: Long-Run Response of Deposit to Disaster Shocks
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Note: This figure uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses
Database for the United States (SHELDUS) and plots the estimated coefficient βh’s from the following specification:

ln(Deposit)c,t+h − ln(Deposit)c,t−1 = βh × Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t.

The data spans from 1994 to 2018. The dependent variable is ln(Deposit)c,t+h−ln(Deposit)c,t−1 where ln(Deposit)c,t
is the natural logarithm of the total deposit in county c and year t. The independent variable, Disaster Shockc,t−1, is
the standardized dollar amount of property damage per capita from natural disasters in county c and year t− 1. θc
and θs(c∈s),t represent county and state-year fixed effects, respectively. The solid blue line plots the point estimate
βh’s with h from 0 to 10, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The
confidence interval is computed from standard errors clustered at the county level.
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Figure 5: Spatial and Temporal Properties of Bank Shocks
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(a) AR(1) estimate for Bank Shocks
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(b) Pairwise R2 for Bank Shocks

This figure documents the properties of the bank-level disaster shocks, Γb,t. Figure 5a plots the kernel density of
AR(1) coefficient for each bank’s disaster shock. Figure 5b plots the kernel density of the bank-pairwise R2, produced
from regressing the deposit shocks across bank pairs. The vertical dashed red lines indicate the means of estimated
coefficients (Figure 5a) and R2 (Figure 5b).
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Figure 6: Long-Run Bank Response to Deposit Shocks
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(a) Deposit
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(b) Liquidity Creation

Note: This figure uses the Summary of Deposit (SOD) and bank liquidity creation data matched with the Spatial
Hazard Events and Losses Database for the United States (SHELDUS) and plots the estimated coefficient βh’s from
the following specification:

yb,t+h − yb,t−1 = βh × Bank Deposit Shockb,t−1 + θb + θt + εt.

The data used in Figure 6a spans from 1994 to 2018, and the data used in Figure 6b spans from 1995 to 2016. Figure
6a uses the natural logarithm of the aggregate deposits of bank b in year t as the dependent variable, yb,t. Figure
6b uses the natural logarithm of the liquidity creation normalized by the gross total assets of bank b in year t as the
dependent variable, yb,t. The liquidity creation variable is constructed following Berger and Bouwman (2009). The
independent variable, Bank Deposit Shockb,t−1, is the standardized bank deposit shock for bank b and year t− 1. θb
and θt represent bank and year fixed effects, respectively. The solid blue line plots the point estimate βh’s with h
from 0 to 10, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence
interval is computed from standard errors clustered at the bank level.
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Figure 7: Aggregate Bank Deposit Shock
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(b) Aggregate Shock and Insurance Payout

Note: Figure 7a plots the aggregate bank deposit shock (Γt) from Q3-1994 until Q4-2018 and indicates major disasters
at its notable peaks. Figure 7b plots the aggregate bank deposit shock against the insurance payout (blue dots) and
illustrates the best-fit line (solid red line).
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Figure 8: Long-Run Responses of ∆ GDP to Granular and Aggregate Shocks
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(a) Granular Shock
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(b) Aggregate Disaster Shock

Note: This figure uses the quarterly series of GDP from 1994Q3 to 2018Q4 and plots the estimated coefficients, βh,
from the following specification:

log(GDP )t+h − log(GDP )t−1 = αh + βh × Shockt−1 + εt

, where t indicates year-quarter. Figure 10a uses the granular deposit shock Γ∗t as the key independent variable.
Figure 10b uses the aggregate disaster shock as the key independent variable, measured using total property damage
per capita due to disasters in the preceding quarter. The solid blue line plots the point estimate βh’s with h from 1
to 9, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval
is computed from heteroskedasticity-robust standard errors.
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Figure 9: Long-Run Response of Small Business Lending to Disaster Shocks
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and
plots the estimated coefficient βh’s in the following specification:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh × Γb,t−1 + θhc,t + θhb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent
variable ∆ln(Lending)b,c,t is the natural logarithm of small business loans originated by bank b in county c and year
t. θhb,c and θhc,t are bank × county and county × year fixed effects, respectively. Γb,t−1 refers to bank specific deposit
shocks, measured using the previous year’s deposit weighted average of disaster damage per capita. All variables are
standardized to a mean of zero and standard deviation of one and winsorized at the 1% level. The solid blue line
plots the point estimate βh’s with h from 0 to 10, and the dashed red line plots the 95% confidence interval for the
point estimate βh’s. The confidence interval is computed from standard errors clustered by bank and county.
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Figure 10: Long-Run Responses of ∆ GDP to Granular and Aggregate Shocks
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(a) Granular Shock
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(b) Aggregate Disaster Shock

Note: This figure uses the quarterly series of GDP from 1994Q3 to 2018Q4 and plots the estimated coefficients, βh,
from the following specification:

log(GDP )t+h − log(GDP )t−1 = αh + βh × Shockt−1 + εt

, where t indicates year-quarter. Figure 10a uses the granular deposit shock Γ∗t as the key independent variable.
Figure 10b uses the aggregate disaster shock as the key independent variable, measured using total property damage
per capita due to disasters in the preceding quarter. The solid blue line plots the point estimate βh’s with h from 1
to 9, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval
is computed from heteroskedasticity-robust standard errors.
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Figure 11: Placebo Test: Salience of deposit concentration, disaster shocks and lending share
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(a) Dropping K Counties
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(b) Bank Size
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(c) Disaster Size

Note: This figure examines the salience of deposit concentration, disaster shocks, and lending share. In Figure 11a,
we construct a series of placebo shocks by omitting the top K deposit counties for each bank, where K ranges from 1
to 15. in Figure 11b, we construct a series of placebo shocks by excluding the most significant banks for each quarter.
We construct a series of shocks by varying the bank size. Specifically, we exclude banks with lending share above
the Kth percentile, with K ranging from the 95th to the 40th percentile in 5 percentile increments.In the x-axis, All
indicates the baseline coefficient associated with the regression of our baseline granular shocks on the GDP growth
rate. The subsequent labels denote the percentile of the bank size distribution used to construct the shocks. In Figure
11c, we construct a series of placebo shocks by excluding the most significant disasters for each quarter. Specifically,
we create a series of twelve shocks by excluding disasters with property damage per capita above the 95th and the
40th percentile in 5 percentile increments. In the x-axis, All indicates the baseline coefficient associated with the
regression of our baseline granular shocks on the GDP growth rate. The subsequent labels denote the percentile of
the disaster size distribution used to construct the shocks.
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Figure 12: Does the Geography of Bank Deposits Matter?
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and
plots the estimated coefficient βk’s in the following specification:

∆ln(Lending)b,c,t = βk × 1

K
·

∑
j∈TopK

Property Damage per capitaj,t−1 + θhc,t + θhb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. j denotes the county where the bank b raises its deposits
ordered by the share of deposits raised by the county for the bank. The data spans from 1997 to 2018. The dependent
variable ∆ln(Lending)b,c,t is the natural logarithm of small business loans originated by bank b in county c and year
t. θhb,c and θhc,t are bank × county and county × year fixed effects, respectively. Property Damage per capitaj,t−1

refers to disaster-induced property damage per capita in county j where bank b raises deposits. All variables are
standardized to a mean of zero and standard deviation of one and winsorized at the 1% level. The solid blue line
plots the point estimate βk’s with k from 1 to 50, where K denotes the county ranked K by share of deposits for
bank b. For example, K = 1 denotes the county that raised the highest share of deposits for bank b. The dashed red
line plots the 95% confidence interval for the point estimate βk’s. 1

K
·
∑

j∈TopK Property Damage per capitaj,t−1 is
computed using a simple average of property damage per capita across across top K counties. The confidence interval
is computed from standard errors clustered by bank and county.
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Figure 13: Long-Run Response of Mortgage Lending to Deposit Shocks
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Note: This figure uses data collected under the Home Mortgage Disclosure Act (HMDA) and plots the estimated
coefficient βh’s in the following specification:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh × Γb,t−1 + θhc,t + θhb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1995 to 2017. ∆ln(Lending)b,c,t
refers to the natural logarithm of mortgage amount originated of bank b in county c and year t. θhb,c and θhc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using
the previous year’s deposit weighted average of disaster damage per capita. All variables are standardized to a mean
of zero and standard deviation of one and winsorized at the 1% level. The dashed red line plots the 95% confidence
interval for the point estimate βh’s. The confidence interval is computed from standard errors clustered at the bank
and county level.
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Table 1: Summary Statistics

# Obs Mean SD P25 P50 P75
Panel A: Bank-County-Year Level Data
Small Business Lending Growth (%) 553,345 4.85 117.15 -43.63 0.00 49.72
Mortgage Origination Growth: All (%) 1,136,531 1.83 255.73 -50.72 0.00 57.72
Mortgage Origination Growth: Jumbo (%) 1,136,531 3.84 221.23 0.00 0.00 0.00
Mortgage Origination Growth: Non-Jumbo (%) 1,136,531 1.41 254.15 -49.43 0.00 55.34
Panel B: County-Year Level Data
Deposit Growth (%) 76,755 4.48 9.20 0.17 3.37 7.12
Total Property Damage (2018 USD) 79,575 3,107,809 30,200,000 933 55,369 446,661
Total Property Damage per capita (2018 USD) 79,575 75.25 569.31 0.02 1.67 14.23
Panel C: Bank-Year Data
Bank-Level Disaster Shock (Γbt) 9,892 93.71 993.34 1.00 5.09 21.76
Ln(Assets) 9,892 14.00 1.74 12.72 13.64 15.00
Loan/Assets 9,892 0.63 0.13 0.56 0.65 0.73
Equity/Assets 9,892 0.10 0.03 0.08 0.09 0.11
Cash/Assets 9,892 0.05 0.04 0.03 0.04 0.06
Deposits/Assets 9,892 0.10 0.07 0.05 0.09 0.13
Hedge/Assets 9,892 -0.05 0.42 0.00 0.00 0.00
Dividend/Assets 9,892 0.00 0.00 0.00 0.00 0.00
Operating Income/Assets 9,892 0.02 0.01 0.01 0.02 0.02
Panel D: Aggregate Data
GDP Growth 98 1.09 0.65 0.81 1.16 1.44
Γt 97 13.12 33.98 2.02 3.67 10.56
Oil Shock 97 0.00 1.01 -0.55 -0.03 0.72
Monetary Shock 97 -0.03 0.10 -0.03 -0.00 0.00
Political Uncertainty Shock 97 0.02 0.16 -0.10 0.02 0.12
Term Spread 97 1.10 0.74 0.60 1.08 1.55
Government Expenditure Shock 97 4.40 2.51 2.97 4.34 6.17
ΓGabaixt 29 -0.00 0.01 -0.01 0.00 0.00
Deposit Growth 98 1.6402 0.5515 1.2337 1.6924 1.9896
C&I Lending Growth 98 1.3873 5.6219 -1.1126 3.0400 4.9582

Note: This table reports summary statistics of key variables explored in this paper. The observations in Panel A are at the bank-county-year
level. The small business lending data spans from 1997 to 2018. The mortgage data spans from 1995 to 2017. The observations in Panel B are
at the county-year level and span from 1994 to 2018. The observations in Panel C are at the annual level and span from 1994 to 2018. The
observations in Panel D are at the quarterly level and span from 1994 to 2018, except ΓGabaix

t which are measured at the annual level and span
from 1994 to 2018.
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Table 2: Disaster Shock and Deposit Growth

Dep Var: ∆ln(Deposits)c,t (1) (2) (3) (4) (5) (6)

Disaster Shockc,t−1 -0.0091*** -0.0121*** -0.0080*** -0.0111*** -0.0097*** -0.0080***
(0.0028) (0.0027) (0.0030) (0.0028) (0.0028) (0.0030)

Year FE X X
County FE X X X
State × Year FE X X
# Obs 76,336 76,336 76,336 76,336 76,336 76,336
R2 0.0001 0.0469 0.0523 0.0993 0.1348 0.1813

Note: This table uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses Database for the
United States (SHELDUS) and reports the estimated coefficient β in the following specification:

∆ln(Deposit)c,t = β × Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The data spans from 1994 to 2018. The dependent variable ∆ln(Deposit)c,t is the
first difference of natural logarithm of total deposit of all banks in county c and year t. The independent variable, Disaster Shockc,t−1, is
the dollar amount of property damage per capita from natural disasters in county c and year t− 1. θc and θs(c∈s),t represent county and
state × year fixed effects, respectively. All variables are standardized to a mean of zero and standard deviation of one, and winsorized
at the 1% level. Standard errors clustered at the county level are reported in parentheses. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3: Orthogonality of Bank Characteristics to Bank-Level Disaster Shock

Dep Var: Γb,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln(Assets)b,t−1 -0.0199** -0.0149 -0.0681
(0.0087) (0.0093) (0.0538)

Loan/Assetsb,t−1 -0.0137 -0.0154 0.0249
(0.0092) (0.0108) (0.0164)

Equity/Assetsb,t−1 0.0051 0.0060 -0.0109
(0.0090) (0.0090) (0.0155)

Cash/Assetsb,t−1 -0.0080 -0.0213*** -0.0075
(0.0050) (0.0066) (0.0109)

Deposits/Assetsb,t−1 0.0283** 0.0302** 0.0205
(0.0123) (0.0140) (0.0210)

Hedge/Assetsb,t−1 0.0063*** 0.0013 -0.0029
(0.0017) (0.0032) (0.0028)

Div/Assetsb,t−1 -0.0074 -0.0092 -0.0171*
(0.0054) (0.0059) (0.0092)

Income/Assetsb,t−1 -0.0042 -0.0050 0.0135
(0.0059) (0.0060) (0.0117)

Bank FE X
Year FE X
# Obs 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892
R2 0.0004 0.0002 0.0000 0.0001 0.0008 0.0000 0.0001 0.0000 0.0017 0.0737

Note: This figure uses the Spatial Hazard Events and Losses Database for the United States (SHELDUS) and bank call report data to report the estimated coefficient β
in the following specification:

Γb,t = β × Bank-Characteristicsb,t + θb + θt + εb,t

where b and t indicate bank and quarter, respectively. The data spans from 1995 to 2018. The dependent variable is the bank-level disaster shock Γb,t. The independent
variables Bank − Characteristicsb,t is the natural logarithm of total bank assets (Column (1)), the average loan balance divided by total assets (Column (2)), the total
equity divided by total assets (Column (3)), the total cash holdings divided by total bank assets (Column (4)), the total deposits divided by total assets (Column (5)),
the net derivatives contract held for hedging divided by total assets (Column (6)), the total dividend on common stocks divided by total assets (Column (7)), and the
operating income divided by total assets (Column (8)). Column (9) and (10) use all the bank characteristics mentioned above. All variables are standardized to a mean
of zero and standard deviation of one, and winsorized at the 1% level. Standard errors clustered at the bank level are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 4: Aggregate Shock and Major Disasters

Quarter
Aggregate

Bank Shock
Major Disaster #1 Affected States Major Disaster #2 Affected States

Insurance Payout
(in 2020 billion $)

1996q3 33.3705 Hurricane Fran NC 2.63
1999q3 30.0705 Hurricane Floyd NC 2.05
2001q1 22.8630 Nisqually earthquake WA 0.44
2004q3 83.7900 Hurricane Ivan FL, AL Hurricane Jeanne FL 14.40
2005q3 244.5543 Hurricane Katrina LA, MS 87.96
2005q4 53.5566 Hurricane Wilma FL 13.42
2008q2 27.7731 June 2008 Midwest floods IN, IA, WI 0.60
2011q2 30.5780 Mississippi River floods MS, MO Super Outbreak (Tornado) AL, MS, TN 7.60
2012q4 80.5528 Hurricane Sandy NJ 28.88
2017q3 205.3722 Hurricane Harvey TX Hurricane Irma FL 63.11
2018q4 30.4282 California wildfires CA Hurricane Michael FL 19.84

Note: This table provides a narrative analysis of major disasters at the notable peaks of the aggregate bank deposit shock Γt shown in Figure
7a. The table reports the natural disasters, states affected by the disasters and the insurance payout associated with these disasters.
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Table 5: Granular Shock and Aggregate Fluctuation

Dep Var: GDP Growtht (1) (2) (3)

Γ∗t−1 -0.0631** -0.0679** -0.0491**
(0.0279) (0.0277) (0.0218)

Constant 1.0836***
(0.0416)

Quarter FE X X
Year FE X
# Obs 97 97 96
R2 0.0237 0.0259 0.5178

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports
the estimated coefficient β in the following specification:

%∆GDPt = α+ β × Γ∗t−1 + εt

where t indicates year-quarter. %∆GDPt is a percentage change in the sea-
sonally adjusted quarterly GDP, and Γ∗t is the granular deposit shock. The
granular shock is standardized to a mean of zero and standard deviation of one,
and winsorized at the 1% level. Heteroskedasticity-robust standard errors are
reported in parentheses. *, **, and *** denote statistical significance at the
10%, 5%, and 1% level, respectively.
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Table 6: Lagged Granular Shock and Aggregate Fluctuation

Dep Var: GDP Growtht (1) (2) (3) (4) (5) (6) (7)

Γ∗t -0.0068 -0.0109
(0.0218) (0.0191)

Γ∗t−1 -0.0631** -0.0622**
(0.0279) (0.0303)

Γ∗t−2 0.0091 0.0065
(0.0190) (0.0195)

Γ∗t−3 0.0374* 0.0347
(0.0218) (0.0214)

Γ∗t−4 0.0077 0.0093
(0.0192) (0.0178)

Γ∗t−5 -0.0102 -0.0112
(0.0172) (0.0166)

Constant 1.0874*** 1.0836*** 1.0837*** 1.0866*** 1.0849*** 1.0844*** 1.0844***
(0.0418) (0.0416) (0.0425) (0.0427) (0.0433) (0.0438) (0.0443)

# Obs 98 97 96 95 94 93 93
R2 0.0003 0.0237 0.0005 0.0084 0.0004 0.0006 0.0330

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports the estimated coefficient βh in the following specification:

%∆GDPt = α+ βh × Γ∗t−h + εt

where t indicates year-quarter and h indicates the number of lags. %∆GDPt is a percentage change in the seasonally adjusted quarterly GDP,
and Γ∗t−h denotes the granular deposit shock and its lags. The granular shock is standardized to a mean of zero and standard deviation of
one, and winsorized at the 1% level. Heteroskedasticity-robust standard errors are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table 7: Horse Race: Granular Shock & Other Macroeconomic Shocks

Dep Var: GDP Growtht (1) (2) (3) (4) (5) (6) (7) (8)

Γ∗t−1 -0.0631** -0.0717*** -0.0612** -0.0621** -0.0627** -0.0753*** -0.0647** -0.0848***
(0.0279) (0.0233) (0.0282) (0.0289) (0.0280) (0.0256) (0.0282) (0.0232)

Oil Shockt−1 -0.0531 -0.0575
(0.0638) (0.0546)

Monetary Shockt−1 0.0763* 0.0549
(0.0394) (0.0380)

Uncertainty Shockt−1 -0.0573 -0.0485
(0.0523) (0.0468)

Term Spreadt−1 -0.0141 -0.0100
(0.0349) (0.0350)

Gvt Exp Shockt−1 -0.1027 -0.0823
(0.0661) (0.0673)

ΓGabaixt−1 0.0261 0.0142
(0.0388) (0.0369)

Constant 1.0836*** 1.0845*** 1.0841*** 1.0828*** 1.0837*** 1.0832*** 1.0836*** 1.0841***
(0.0416) (0.0411) (0.0410) (0.0414) (0.0417) (0.0406) (0.0417) (0.0408)

# Obs 97 97 97 97 97 97 97 97
R2 0.0237 0.0394 0.0581 0.0428 0.0248 0.0854 0.0277 0.1369

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 matched with other macroeconomic variables and reports the estimated coefficients β1 and
the vector β2 in the following specification:

%∆GDPt = α+ β1 × Γ∗t−1 + β2 × Macro-Shockt−1 + εt

where t indicates year-quarter. %∆GDPt is a percentage change in the seasonally adjusted quarterly GDP, Γ∗t denotes the granular deposits shock, and Macro-
Shockt denotes the vector of macroeconomic shocks. Column (2) through (7) use oil supply surprises defined as the first principal component of the one-day
OPEC announcement return on WTI futures contracts with maturities ranging from one month to one year (Column (2)), monetary policy shock defined as
the change in fed funds futures rate within 30 minutes window around press releases of the Federal Open Market Committee (Column (3)), economic policy
uncertainty shock defined as the percentage change in the economic policy uncertainty index constructed by Baker, Bloom and Davis (2016) (Column (4)), the
term spread defined as the difference between the three- and six-month treasury constant maturity rate (Column (5)), the government expenditure shock defined
as the percentage change in the total government expenditure (Column (6)), and the granular residual defined as the sum of the top 100 firms’ idiosyncratic
productivity shocks, weighted by the share of firms sales in GDP (Column (7)), respectively. The idiosyncratic productivity shock is computed by taking the log
difference of sales per employee and controlling for industry-level mean productivity growth. The granular shock and macroeconomic shocks are standardized to
a mean of zero and standard deviation of one, and winsorized at the 1% level. Heteroskedasticity-robust standard errors are reported in parentheses. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 8: Instrumental Variables Regression

(1) (2) (3) (4) (5) (6)
2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage

∆ GDP ∆ Deposits ∆ GDP ∆ Loans ∆ Loans ∆ Deposits

Deposits Growth 0.8755** 6.0853**
(0.3978) (2.7785)

C&I Lending Growth 0.1438*
(0.0822)

Γ∗t−1 -0.0016*** -0.0099** -0.0016***
(0.0005) (0.0042) (0.0005)

# Obs 97 97 97 97 97 97
R2 0.0256 0.0187 0.0256 0.0066 0.0066 0.0187
KP LM Statistic 1.182 0.942 1.182
KP Wald F Statistic 11.137 5.511 11.137

Note: This table presents the estimates of our IV strategy. Columns (1) and (3) report the second stage regression of GDP
growth on aggregate deposit growth and aggregate lending growth, using the instrumented measures from the first stage,
respectively. The first stage regression reported in column (2) establishes a causal relation between aggregate deposit growth
and aggregate deposit shocks. The first stage regression reported in column (4) establish a causal relation between aggregate
commercial and industrial lending growth and aggregate deposit shocks. Column (6) reports the first stage regression of deposit
growth on aggregate deposits shocks, and column (5) reports the second stage estimate of the regression of lending growth on
deposit growth. Heteroskedasticity-robust standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

63



Table 9: Small Business Lending and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

Γb,t−1 -0.0111*** -0.0131*** -0.0112*** -0.0160*** -0.0093*** -0.0148***
(0.0022) (0.0023) (0.0023) (0.0027) (0.0023) (0.0028)

County FE X X
Year FE X X
County × Year FE X X
Bank × County FE X X
Bank FE X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0001 0.0104 0.0163 0.1245 0.0747 0.1985

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the estimated
coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. All variables used in this table are standardized to mean zero and standard
deviation of one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 10: Small Business Lending and Deposit Shocks by Bank Size

Dep Var: ∆ln(Lending)b,c,t
(1) (2) (3) (4)

Small Banks Medium Banks Large Banks Top 20 Banks

Γb,t−1 -0.0061 -0.0128*** -0.0357*** -0.0251**
(0.0308) (0.0037) (0.0087) (0.0098)

County × Year FE X X X X
County × Bank FE X X X X
# Obs 35,632 165,547 298,355 235,454
R2 0.4609 0.3254 0.2722 0.3133

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) matched
with bank call report data and reports the estimated coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent
variable ∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year
t. θb,c and θc,t are bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disaster damage per capita. Sample banks are banks
with total assets less than or equal to $2 billion (Column (1)), banks with total assets greater than $2 billion but less
than or equal to $35 billion (Column (2)), banks with total assets greater than $35 billion (Column (3)), and 20 largest
banks by assets (Column (4)). All variables used in this table are standardized to mean zero and standard deviation of
one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 11: Small Business Lending and Deposit Shocks by Bank Constraint

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

Low Tier 1 Ratiob,t−1 × Γb,t−1 -0.1784*** -0.2045*** -0.1978*** -0.2161*** -0.1815*** -0.2196***
(0.0113) (0.0118) (0.0125) (0.0124) (0.0124) (0.0137)

Low Tier 1 Ratiob,t−1 -0.0056*** -0.0031 -0.0281*** -0.0033 -0.0305*** -0.0277***
(0.0021) (0.0021) (0.0038) (0.0022) (0.0042) (0.0044)

Γb,t−1 -0.0036* -0.0053** -0.0046** -0.0076*** -0.0023 -0.0067**
(0.0022) (0.0022) (0.0023) (0.0026) (0.0023) (0.0027)

County FE X X
Year FE X X
County × Year FE X X
County × Bank FE X X
Bank FE X
# Obs 547,031 547,031 547,031 547,031 547,031 547,031
R2 0.0006 0.0113 0.0172 0.1267 0.0746 0.2002

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) matched with the SNL bank
regulatory data and reports the estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 × λb,t−1 × Γb,t−1 + β2 × λb,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable ∆ln(Lending)b,c,t
is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are bank-county and county-year
fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit weighted average of
disaster damage per capita. λb,t−1 is an indicator variable that take one for banks whose tier 1 capital ratio is lower than its median value
in year t− 1. All variables used in this table are standardized to mean zero and standard deviation of one and winsorized at the 1% level.
Standard errors clustered at the bank and county level are reported in parentheses. *, **, and *** denote statistical significance at the
10%, 5%, and 1% level, respectively.
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Table 12: Core vs Non-Core Markets by the Presence of Branch

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

NCb,c,t−1 × Γb,t−1 -0.0145*** -0.0155*** -0.0166*** -0.0151*** -0.0131*** -0.0147***
(0.0037) (0.0037) (0.0037) (0.0044) (0.0039) (0.0045)

NCb,c,t−1 0.0823*** 0.0902*** 0.0965*** 0.0873*** 0.3792*** 0.3570***
(0.0016) (0.0018) (0.0020) (0.0019) (0.0074) (0.0080)

Γb,t−1 -0.0004 -0.0014 0.0009 -0.0044 0.0002 -0.0036
(0.0022) (0.0022) (0.0022) (0.0032) (0.0022) (0.0031)

County FE X X
Year FE X X
Bank FE X
County × Year FE X X
County × Bank FE X X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0015 0.0119 0.0178 0.1259 0.0792 0.2017

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the estimated
coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 ×NCb,c,t−1 × Γb,t−1 + β2 ×NCb,c,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. NCb,c,t−1 is an indicator variable that take one for counties in which bank b
has a branch in year t− 1. All variables used in this table are standardized to mean zero and standard deviation of one and winsorized
at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table 13: Small vs Large Recipients of Small Business Loans and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t,s (1) (2) (3) (4)

Smalls ×Γb,t−1 -0.0160*** -0.0160*** -0.0160*** -0.0130***
(0.0042) (0.0044) (0.0042) (0.0047)

Smalls -0.0133*** -0.0133*** -0.0133***
(0.0014) (0.0014) (0.0014)

Γb,t−1 0.0070** 0.0057
(0.0034) (0.0036)

County × Year FE X
County × Bank FE X
County × Bank × Year FE X X
Small × County × Bank FE X
# Obs 552,344 552,344 552,344 552,344
R2 0.0001 0.1710 0.5345 0.5684

Note: This table uses small business lending data collected under the Community Reinvestment Act
(CRA) and reports the estimated coefficient β in the following specification:

∆ln(Lending)b,c,t,s = β1 × Smalls × Γb,t−1 + β2 × Smalls + θb,c,t + θb,c,s + εb,c,t,s

where b, c, t and s indicate bank, county, year, and firm size (small or large), respectively. The data spans
from 1995 to 2017. The dependent variable ∆ln(Lending)b,c,t,s is the change in the natural logarithm
of total small business lending to firm type s (small or large) originated from bank b in county c and
year t. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit weighted
average of disaster damage per capita. Smallj is an indicator variable that takes a value of 1 for loans
given to firms with gross revenue less than $1 million and 0, otherwise. θb,c,t indicates bank-county-year
fixed effects. θb,c,s indicates bank-county-small fixed effects. All variables are standardized to mean zero
and standard deviation of one and winsorized at the 1% level. Standard errors clustered at the bank and
county level are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% level, respectively.
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Table 14: Mortgage Lending and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t
(1) (2) (3)

Purchase Refinancing Improvement

Γb,t−1 -0.0073*** -0.0047*** -0.0032*
(0.0020) (0.0017) (0.0018)

County × Year FE X X X
County × Bank FE X X X
# Obs 1,136,531 1,136,531 1,136,531
R2 0.1302 0.1821 0.1166

Note: This table uses Home Mortgage Disclosure Act (HMDA) data and reports the esti-
mated coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1995
to 2017. The dependent variable ∆ln(Lending)b,c,t is the first difference of the natural log-
arithm of mortgage lending towards home purchases (Column (1)), first difference of the
natural logarithm of mortgage lending towards refinancing (Column (2)), and first difference
of the natural logarithm of mortgage lending towards home improvement (Column (3)) orig-
inated from bank b in county c and year t. θb,c and θc,t are bank-county and county-year
fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the
previous year’s deposit weighted average of disaster damage per capita. All variables used in
this table are standardized to mean zero and standard deviation of one and winsorized at the
1% level. Standard errors clustered at the bank and county level are reported in parentheses.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 15: Jumbo vs Non-Jumbo Mortgage Loans and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t,j (1) (2) (3) (4)

Jumboj ×Γb,t−1 -0.0125*** -0.0125*** -0.0125*** -0.0140***
(0.0022) (0.0022) (0.0022) (0.0024)

Jumboj 0.0099*** 0.0099*** 0.0099***
(0.0006) (0.0006) (0.0006)

Γb,t−1 0.0091*** 0.0006
(0.0016) (0.0018)

County × Year FE X
County × Bank FE X
County × Bank × Year FE X X
County × Bank × Jumbo FE X
# Obs 2,276,662 2,276,662 2,276,662 2,276,662
R2 0.0000 0.0626 0.5322 0.5513

Note: This table uses Home Mortgage Disclosure Act (HMDA) data and reports the estimated coefficient
β in the following specification:

∆ln(Lending)b,c,t,j = β1 × Jumboj × Γb,t−1 + β2 × Jumboj + θb,c,t + θb,c,j + εb,c,t,j

where b, c, t and j indicate bank, county, year, and loan type (jumbo or non-jumbo), respectively. The
data spans from 1995 to 2017. The dependent variable ∆ln(Lending)b,c,t,j is the change in the natural
logarithm of total mortgage lending of type j (jumbo or non-jumbo) originated from bank b in county c and
year t. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit weighted
average of disaster damage per capita. Jumboj is an indicator variable that takes a value of 1 for jumbo
mortgages and 0 for non-jumbo mortgages. θb,c,t indicates bank-county-year fixed effects. θb,c,j indicates
jumbo-bank-county fixed effects. All variables are standardized to mean zero and standard deviation of
one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 16: Bank-Borrower Lending Relationship and Real Effects

(1) (2) (3) (4)
Debt Size Employment CapEx

Youngf ×
∑

b Γb,t−1 -0.1305** -0.0928** -0.0951** -0.1379**
(0.0654) (0.0436) (0.0446) (0.0632)∑

b Γb,t−1 -0.0124** -0.0053 -0.0023 -0.0017
(0.0060) (0.0037) (0.0028) (0.0045)

Firm FE X X X X
Industry × Young × Year FE X X X X
# Obs 11,388 11,996 11,383 10,648
R2 0.9289 0.9723 0.9712 0.9516

Note: This table uses Dealscan data matched with Compustat data and reports β’s in the following
specification:

yf,t = β1 × Y oungf ×
∑
b

Γb,t−1 + β2 × Y oungf + β3 ×
∑
b

Γb,t−1 + θi,g,t + θf + εf,t

where f , and t indicates borrowing firm, and year, respectively. The dependent variable yf,t is the natural
logarithm of total debt (Column (1)), natural logarithm of the book value of assets (Column (2)), natural
logarithm of employment (Column (3)), and natural logarithm of capital expenditure (Column (4)). Firm
age is defined as the years passed since IPO, and the variable Y oungf is an indicator variable that takes
one for the firms with age less than the median firm age. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disaster damage per capita.

∑
b Γb,t−1

refers to the sum of bvank deposit shocks for lead banks of firm f identified using the Dealscan database.
θi,g,t and θf are industry-young-year and firm fixed effects, respectively. Industries refer to the 38 Fama-
French industries. All variables used in this table are standardized to mean zero and standard deviation of
one and winsorized at the 1% level. Standard errors clustered at the firm level are reported in parentheses.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Online Appendix for:

“The Deposits Channel of Aggregate Fluctuation”

Appendix A Figures and Tables

Table A.1: Disaster Shock and Deposit Growth with Control of Lagged Shocks

∆ln(Deposits)c,t (1) (2) (3)

Disaster Shockc,t−1 -0.0080*** -0.0086*** -0.0089***
(0.0030) (0.0031) (0.0032)

Disaster Shockc,t−2 -0.0140*** -0.0143***
(0.0028) (0.0029)

Disaster Shockc,t−3 -0.0070**
(0.0032)

County FE X X X
State-Year FE X X X
# Obs 76,336 76,336 76,336
R2 0.1813 0.1815 0.1815

Note: This table uses the Summary of Deposit (SOD) data matched with
the Spatial Hazard Events and Losses Database for the United States (SHEL-
DUS) and reports the estimated coefficient βk’s in the following specification:

∆ln(Deposit)c,t =

k=3∑
k=1

βk × Disaster Shockc,t−k + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The data spans from
1994 to 2018. The dependent variable ∆ln(Deposit)c,t is the first difference
of natural logarithm of total deposit of all banks in county c and year t. The
independent variable Disaster Shockc,t−1 is the dollar amount of property
damage per capita from natural disasters in county c and year t − 1. θc
and θs(c∈s),t represent county and state-year fixed effects, respectively. All
variables used in this table are standardized to a mean of zero and standard
deviation of one, and winsorized at the 1% level. Standard errors clustered at
the county level are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table A.2: Granular Shock and Aggregate Fluctuation

Dep Var: GDP Growtht (1) (2) (3)

Γ∗t−1 -0.0645** -0.0770***
(0.0284) (0.0285)

ΓCt−1 -0.0005 0.0605
(0.1011) (0.0856)

Constant 1.0588*** 1.0596*** 1.0587***
(0.0470) (0.0477) (0.0472)

# Obs 83 83 83
R2 0.0262 0.0000 0.0313

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports
the estimated coefficient β in the following specification:

%∆GDPt = α+ β1 × Γ∗t−1 + β2 × ΓC
t−1 + εt

where t indicates year-quarter. %∆GDPt is a percentage change in the seasonally
adjusted quarterly GDP, Γ∗t is the granular deposit shock, and ΓC

t is the granular
collateral shock. The granular shocks are standardized to a mean of zero and stan-
dard deviation of one, and winsorized at the 1% level. Heteroskedasticity-robust
standard errors are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table A.3: Small Business Lending and Deposit Shocks: Robustness Test

Dep Var: ∆ln(Lending)b,c,t
(1) (2)

Unaffected Affected

Γb,t−1 -0.0382*** -0.0134***
(0.0131) (0.0030)

County × Year FE X X
Bank × County FE X X
# Obs 96,259 436,349
R2 0.3222 0.2089

Note: This table uses small business lending data collected under the
Community Reinvestment Act (CRA) and reports the estimated coef-
ficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data
spans from 1997 to 2018. The dependent variable ∆ln(Lending)b,c,t is
the natural logarithm of small business loans originated from bank b
in county c and year t. θb,c and θc,t are bank-county and county-year
fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disaster
damage per capita. Column (1) restricts sample to the counties that
were not affected by any disaster in year t− 1, and column (2) restricts
sample to counties that were affected by a disaster in year t − 1. All
variables used in this table are standardized to mean zero and standard
deviation of one and winsorized at the 1% level. Standard errors clus-
tered at the bank and county level are reported in parentheses. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table A.4: Small Business Lending and Deposit Shocks: Exclusion of Credit Card Banks

Dep Var: ∆ln(Lending)b,c,t (1) (2)

Γb,t−1 -0.0129*** -0.0148***
(0.0030) (0.0028)

County × Year FE X X
Bank × County FE X X
# Obs 474,887 553,227
R2 0.2139 0.1985

Note: This table uses small business lending data collected under the
Community Reinvestment Act (CRA) and reports the estimated coef-
ficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data
spans from 1997 to 2018. The dependent variable ∆ln(Lending)b,c,t is
the natural logarithm of small business loans originated from bank b
in county c and year t. θb,c and θc,t are bank-county and county-year
fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disas-
ter damage per capita. We drop credit card banks from the sample.
Column (1) drops banks that have at least $1 billion in loans under
$100K and these loans constitute at least 75% of these loans, following
Adams, Brevoort and Driscoll (2020). Column (2) drops banks that
have at least 99% of loans under $100K, and where the average loan
amount is less than $15K, following Board of Governors of the Federal
Reserve System (2010). All variables used in this table are standard-
ized to mean zero and standard deviation of one and winsorized at the
1% level. Standard errors clustered at the bank and county level are
reported in parentheses. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.

75



Table A.5: Core vs Non-Core Markets by the Share of Lending

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

NCb,c,t−1 × Γb,t−1 -0.0130*** -0.0160*** -0.0185*** -0.0148*** -0.0132** -0.0165***
(0.0048) (0.0050) (0.0049) (0.0053) (0.0051) (0.0055)

NCb,c,t−1 0.4846*** 0.4873*** 0.5563*** 0.4861*** 1.0018*** 1.0610***
(0.0029) (0.0029) (0.0033) (0.0029) (0.0051) (0.0050)

Γb,t−1 -0.0035 -0.0050** -0.0022 -0.0076*** -0.0040* -0.0058**
(0.0022) (0.0023) (0.0023) (0.0028) (0.0023) (0.0028)

County FE X X
Year FE X X
Bank FE X
County × Year FE X X
County × Bank FE X X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0554 0.0660 0.0793 0.1777 0.1814 0.3045

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the estimated
coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 ×NCb,c,t−1 × Γb,t−1 + β2 ×NCb,c,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. NCb,c,t−1 is an indicator variable that take one for county c in which bank b
has small business lending market share greater than the median market share in t− 1. All variables used in this table are standardized
to mean zero and standard deviation of one and winsorized at the 1% level. Standard errors clustered at the bank and county level are
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.6: Property Damage from Natural Disasters

Property Damage Distribution
Number of Total Damage (in 2018 Million $)

Hazard Type Affected Counties (in 2018 Billion $) P25 P50 P75 P95 P99

Hurricane 3,044 240.13 0.04 0.55 4.71 223.46 1,379.27
Flooding 23,397 181.29 0.01 0.07 0.51 8.19 58.64
Tornado 11,691 39.66 0.02 0.09 0.42 5.76 53.90
Earthquake 30 38.16 0.66 18.19 22.32 945.26 33,887.58
Wildfire 1,652 33.73 0.00 0.06 0.81 11.16 151.38
Hail 11,538 33.20 0.00 0.02 0.08 1.81 33.92
Wind 49,493 19.00 0.01 0.02 0.07 0.55 3.53
Severe Storm 42,793 13.90 0.00 0.02 0.05 0.32 1.93
Winter Weather 16,327 12.88 0.00 0.03 0.19 2.51 13.96
Landslide 687 5.67 0.00 0.01 0.24 14.63 82.02
Drought 752 3.12 - - - 3.91 17.26
Coastal 309 1.85 - - 0.00 1.68 72.97
Lightning 8,216 1.25 0.00 0.02 0.08 0.50 1.69
Tsunami/Seiche 47 0.11 0.02 0.03 0.10 15.85 42.36
Heat 691 0.05 - - - 0.08 0.17
Fog 345 0.05 0.00 0.03 0.09 0.43 1.48
Volcano 3 0.02 - 0.00 0.05 15.38 15.38
Avalanche 207 0.01 - - 0.00 0.02 0.59

All Hazard Types 171,222 624.08 0.00 0.02 0.11 1.90 21.16
Note: This table reports property damages from natural disasters in the Spatial hazard Events and Losses Database for the Unites

States (SHELDUS). The data are at the county and year level. The sample includes all natural disasters reported in SHELDUS
that occurred in the US between 1994 and 2018.
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Figure A.1: Property Damage per Capita across Counties from 1994 to 2018

Notes: This figure illustrates the average natural disaster-induced property damage per capita across counties from
1994 to 2018. The intensity of the blue shading represents the dollar amount of property damage from natural
disasters.
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Figure A.2: Geographic Concentration Across Bank Characteristics
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(a) Deposits
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(b) Liabilities
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(c) Equity
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(d) Loans

Note: This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the relation between the
geographic concentration of deposits (Figure A.2a), liabilities (Figure A.2b), equity (Figure A.2c), and loans (Figure
A.2d). Each figure sorts banks by their deposits, total liabilities, book value of equity, and loans in figures A.2a,
A.2b, A.2c, and A.2d, and reports the average deposit share of counties with the largest deposit share against the
percentile of the bank deposits, total liabilities, book value of equity, and loans, respectively, i.e., average value of
deposit share in the largest deposit counties corresponding to the percentile of bank deposits, total liabilities, book
value of equity, and loans, respectively.
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Figure A.3: Time Series of Deposit Concentration for Big Four Banks
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This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the geographic concentration
of bank deposits over time. The figure reports the share of deposits in the largest deposit county for the Big Four
banks over time. The Big Four banks are Citibank, JP Morgan, Wells Fargo, and Bank of America.
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Figure A.4: Disaster Shock and Deposit Growth: Placebo Test
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-0.0099 -0.0083 -0.0058 -0.0024 0.0001 0.0024 0.0059 0.0091 0.0107 0.0000 0.0036

Notes: This figure uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses
Database for the United States (SHELDUS) and plots the kernel density of the estimated coefficient β’s obtained
from 1,000 simulations of disaster shock in the following specification:

∆ln(Deposit)c,t = β × Placebo Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The table below the figure reports the summary statistics
for the distribution of β. The data used in this figure and table spans from 1994 to 2018. The dependent variable
∆ln(Deposit)c,t is the first difference of the natural logarithm of total deposit by all banks in county c and year t
(i.e., ln(Deposit)c,t − ln(Deposit)c,t−1)). The independent variable Placebo Disaster Shockc,t−1 measures the dollar
amount of property damage per capita from natural disasters in county c and year t− 1 and is generated randomly
from a standard normal distribution. θc and θs(c∈s),t represent county and state-year fixed effects, respectively. The
dashed red line indicates the point estimate β from a baseline regression in Column 6 of Table 2. Among the 1,000
β’s obtained from simulated placebo disaster shock, 1.6% of them lie to the left of the dashed red line.
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Figure A.5: Disaster Affected and Unaffected Counties
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and
plots the estimated coefficient βh’s in the following specification for disaster affected and unaffected counties:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh × Γb,t−1 + θhc,t + θhb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent
variable ∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and
year t. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit weighted average
of disaster damage per capita. θhb,c and θhc,t are bank × county and county × year fixed effects, respectively. All
variables are standardized to mean zero and standard deviation of one and winsorized at the 1% level. The solid blue
line plots the point estimate βh’s with h from 0 to 10, and the dashed red line plots the 95% confidence interval for
the point estimate βh’s. The confidence interval is computed from standard errors clustered by bank and county.
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